File size: 6,119 Bytes
0e999cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902f49d
 
 
 
 
0e999cf
 
902f49d
0e999cf
 
 
902f49d
 
 
 
 
 
0e999cf
 
902f49d
0e999cf
 
 
 
 
 
 
 
 
902f49d
 
 
 
 
 
0e999cf
a4b2dd4
0e999cf
 
 
 
 
 
 
902f49d
0e999cf
 
902f49d
0e999cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902f49d
0e999cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3641e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import spaces   
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile

# βœ… Automatically detects whether to use GPU or CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

llasa_3b ='srinivasbilla/llasa-3b'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)

model = AutoModelForCausalLM.from_pretrained(
    llasa_3b,
    trust_remote_code=True,
    device_map="auto",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.bfloat16  # βœ… Uses float16 for GPU, float32 for CPU
)

model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().to(device)  # βœ… Moves model to correct device dynamically

# βœ… Whisper ASR pipeline with automatic CPU/GPU selection
whisper_turbo_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.bfloat16,
    device=device  # βœ… Automatically selects CPU/GPU
)

def ids_to_speech_tokens(speech_ids):
 
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

def extract_speech_ids(speech_tokens_str):
 
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]

            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids


@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        progress(0, 'Loading and trimming audio...')
        waveform, sample_rate = torchaudio.load(sample_audio_path)
        if len(waveform[0])/sample_rate > 15:
            gr.Warning("Trimming audio to first 15secs.")
            waveform = waveform[:, :sample_rate*15]

        if waveform.size(0) > 1:
            # Convert stereo to mono by averaging the channels
            waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
        else:
            # If already mono, just use the original waveform
            waveform_mono = waveform
        prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
        prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
        progress(0.5, 'Transcribed! Generating speech...')
        if len(target_text) == 0:
            return None
        elif len(target_text) > 300:
            gr.Warning("Text is too long. Please keep it under 300 characters.")
            target_text = target_text[:300]
            
        input_text = prompt_text + ' ' + target_text

        with torch.no_grad():
            vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
            vq_code_prompt = vq_code_prompt[0,0,:]
            speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)

            formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

            chat = [
                {"role": "user", "content": "Convert the text to speech:" + formatted_text},
                {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
            ]

            input_ids = tokenizer.apply_chat_template(
                chat, 
                tokenize=True, 
                return_tensors='pt', 
                continue_final_message=True
            ).to(device)
            
            speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
            
            if speech_end_id is None:
                raise ValueError("Error: `<|SPEECH_GENERATION_END|>` token not found!")

            outputs = model.generate(
                input_ids,
                max_length=2048,
                eos_token_id=speech_end_id,
                do_sample=True,
                top_p=1,           
                temperature=0.8
            )

            generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix):-1]
            speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)    
            speech_tokens = extract_speech_ids(speech_tokens)

            if not speech_tokens:
                raise ValueError("Error: No valid speech tokens extracted!")
            
            speech_tokens = torch.tensor(speech_tokens).unsqueeze(0).unsqueeze(0).to(device)

            gen_wav = Codec_model.decode_code(speech_tensor)
            gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]

            progress(1, 'Synthesized!')

        return (16000, gen_wav[0, 0, :].cpu().numpy())

# βœ… Gradio UI setup
with gr.Blocks() as app_tts:
    gr.Markdown("# Zero Shot Voice Clone TTS")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
    generate_btn = gr.Button("Synthesize", variant="primary")
    audio_output = gr.Audio(label="Synthesized Audio")

    generate_btn.click(
        infer,
        inputs=[ref_audio_input, gen_text_input],
        outputs=[audio_output],
    )

with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)        
""")

with gr.Blocks() as app:
    gr.Markdown("""
# llasa 3b TTS
This is a local web UI for llasa 3b SOTA Zero Shot Voice Cloning and TTS model.
The checkpoints support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
""")
    gr.TabbedInterface([app_tts], ["TTS"])

app.launch(ssr_mode=False)