Spaces:
Sleeping
Sleeping
File size: 8,205 Bytes
379f06e 4d6e8c2 fe4a4cb 379f06e fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 3b09640 4d6e8c2 70f5f26 1c33274 70f5f26 fe4a4cb 379f06e 5909b08 379f06e 5909b08 379f06e 5909b08 379f06e 5909b08 379f06e 5909b08 379f06e 5909b08 379f06e 3b09640 1c33274 70f5f26 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 70f5f26 4d6e8c2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 fe4a4cb 1431ab9 fe4a4cb 379f06e fe4a4cb 379f06e fe4a4cb 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 4d6e8c2 70f5f26 4d6e8c2 fe4a4cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import random
import joblib
import librosa
import numpy as np
import pandas as pd
from tqdm import tqdm
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset, Audio
from sklearn.metrics import accuracy_score
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
def is_valid_duration(example):
"""
Filter function to remove samples with decoding errors.
To be used with datasets.filter()
"""
return len(example["audio"]["array"]) > 0
def enhanced_dsp_pipeline(y, sr, n_fft=80, hop_length=40):
"""Extract enhanced audio features."""
features = {}
# Normalize audio with a larger maximum value
y = librosa.util.normalize(y, norm=np.inf)
# Apply pre-emphasis to enhance high frequencies
y_pre = librosa.effects.preemphasis(y, coef=0.97)
# Compute spectrograms for both original and pre-emphasized signals
D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length)
D_pre = librosa.stft(y_pre, n_fft=n_fft, hop_length=hop_length)
S = np.abs(D)
S_pre = np.abs(D_pre)
# Core spectral features from original signal
features['centroid'] = librosa.feature.spectral_centroid(S=S, sr=sr).ravel()
features['roloff'] = librosa.feature.spectral_rolloff(S=S, sr=sr, roll_percent=0.85).ravel()
features['zcr'] = librosa.feature.zero_crossing_rate(y, frame_length=n_fft, hop_length=hop_length).ravel()
features['rmse'] = librosa.feature.rms(S=S, frame_length=n_fft).ravel()
features['flux'] = librosa.onset.onset_strength(y=y, sr=sr).ravel()
# Additional features from pre-emphasized signal
features['pre_centroid'] = librosa.feature.spectral_centroid(S=S_pre, sr=sr).ravel()
features['pre_roloff'] = librosa.feature.spectral_rolloff(S=S_pre, sr=sr, roll_percent=0.85).ravel()
features['pre_contrast'] = librosa.feature.spectral_contrast(S=S_pre, sr=sr, n_bands=2).ravel()
# Bandwidth at different frequency cutoffs
features['bandwidth_80'] = librosa.feature.spectral_bandwidth(S=S, sr=sr, p=0.8).ravel()
features['bandwidth_90'] = librosa.feature.spectral_bandwidth(S=S, sr=sr, p=0.9).ravel()
# Enhanced MFCC computation with more coefficients and focused frequency bands
mfcc = librosa.feature.mfcc(
y=y_pre, # Use pre-emphasized signal
sr=sr,
n_fft=n_fft*2, # Increased frequency resolution
hop_length=hop_length,
n_mfcc=20, # Increased from 13 to 20
fmin=50, # Focus on chainsaw frequency range
fmax=2000, # Upper limit for chainsaw harmonics
n_mels=40 # Increased mel bands
)
# Compute deltas and double-deltas (acceleration coefficients)
mfcc_delta = librosa.feature.delta(mfcc)
mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
# Add static MFCC coefficients
for idx, v_mfcc in enumerate(mfcc):
features[f'mfcc_{idx}'] = v_mfcc.ravel()
# Add delta coefficients
for idx, v_delta in enumerate(mfcc_delta):
features[f'mfcc_delta_{idx}'] = v_delta.ravel()
# Add double-delta coefficients
for idx, v_delta2 in enumerate(mfcc_delta2):
features[f'mfcc_delta2_{idx}'] = v_delta2.ravel()
# Calculate covariance between consecutive MFCC coefficients
for i in range(mfcc.shape[0]-1):
features[f'mfcc_cov_{i}_{i+1}'] = np.cov(mfcc[i], mfcc[i+1])[0,1]
# Calculate statistics
stats_dict = {}
for k, v in features.items():
stats_dict[f'{k}_max'] = np.max(v)
stats_dict[f'{k}_min'] = np.min(v)
stats_dict[f'{k}_mean'] = np.mean(v)
stats_dict[f'{k}_std'] = np.std(v)
return stats_dict
def segment_features(y, sr, segment_duration=0.5):
"""Extract features from audio segments."""
segment_length = int(segment_duration * sr)
segments = [y[i:i + segment_length] for i in range(0, len(y), segment_length)]
all_features = []
for segment in segments:
if len(segment) >= segment_length // 2:
features = enhanced_dsp_pipeline(segment, sr)
all_features.append(features)
if not all_features:
return enhanced_dsp_pipeline(y, sr)
# Aggregate features across segments
aggregated_features = {}
for key in all_features[0].keys():
values = [f[key] for f in all_features]
aggregated_features[key] = np.mean(values)
aggregated_features[f"{key}_var"] = np.var(values)
return aggregated_features
def process_dataset(dataset):
"""Process the dataset and prepare features."""
features = []
labels = []
for d in tqdm(dataset):
y = d["audio"]["array"]
label = d["label"]
# Process original audio
segment_feats = segment_features(y, sr=4000)
features.append(segment_feats)
labels.append(label)
X = pd.DataFrame(features)
y = np.array(labels)
return X, y
def evaluate_model(model, X_test, selected_features):
"""Evaluate model on test set."""
X_test_selected = X_test[selected_features]
return model.predict(X_test_selected)
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
test_dataset = test_dataset.filter(is_valid_duration)
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=4000))
X_test, true_labels = process_dataset(test_dataset)
model = joblib.load('tasks/assets/chainsaw_model.joblib')
selected_features = joblib.load('tasks/assets/selected_features.joblib')
predictions = evaluate_model(model, X_test, selected_features)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |