|
import streamlit as st
|
|
from ultralytics import YOLO
|
|
import cv2
|
|
import easyocr
|
|
import numpy as np
|
|
import pandas as pd
|
|
from PIL import Image
|
|
import tempfile
|
|
|
|
|
|
@st.cache_resource
|
|
def load_model():
|
|
model = YOLO('yolo11n-custom.pt')
|
|
model.fuse()
|
|
return model
|
|
|
|
model = load_model()
|
|
|
|
reader = easyocr.Reader(['en'])
|
|
def apply_filters(image, noise, sharpen, grayscale, threshold, edges, invert, auto, blur, contrast, brightness, scale, denoise, hist_eq, gamma, clahe):
|
|
img = np.array(image)
|
|
|
|
|
|
if auto:
|
|
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
|
|
l, a, b = cv2.split(lab)
|
|
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
|
|
l = clahe.apply(l)
|
|
img = cv2.merge((l, a, b))
|
|
img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB)
|
|
|
|
|
|
|
|
if scale != 1.0:
|
|
height, width = img.shape[:2]
|
|
img = cv2.resize(img, (int(width * scale), int(height * scale)))
|
|
|
|
|
|
if noise:
|
|
img = cv2.bilateralFilter(img, 9, 75, 75)
|
|
|
|
|
|
if denoise:
|
|
img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
|
|
|
|
|
|
if sharpen:
|
|
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
|
|
img = cv2.filter2D(img, -1, kernel)
|
|
|
|
|
|
if grayscale or threshold or hist_eq or clahe:
|
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
|
if hist_eq:
|
|
img = cv2.equalizeHist(img)
|
|
|
|
|
|
if clahe:
|
|
clahe_filter = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
|
|
img = clahe_filter.apply(img)
|
|
|
|
|
|
if threshold:
|
|
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
|
|
|
|
|
|
if edges:
|
|
img = cv2.Canny(img, 100, 200)
|
|
|
|
|
|
if invert:
|
|
img = cv2.bitwise_not(img)
|
|
|
|
|
|
if gamma != 1.0:
|
|
inv_gamma = 1.0 / gamma
|
|
table = np.array([(i / 255.0) ** inv_gamma * 255 for i in np.arange(0, 256)]).astype("uint8")
|
|
img = cv2.LUT(img, table)
|
|
|
|
|
|
if blur:
|
|
img = cv2.GaussianBlur(img, (2*blur + 1, 2*blur + 1), 0)
|
|
|
|
|
|
if contrast != 1.0 or brightness != 0:
|
|
img = cv2.convertScaleAbs(img, alpha=contrast, beta=brightness)
|
|
|
|
return img
|
|
|
|
st.title("πΌοΈ Refine Image for Detection")
|
|
st.write("Enhance the license plate image for better recognition.")
|
|
|
|
uploaded_file = st.file_uploader("π€ Upload an image", type=["jpg", "png", "jpeg"])
|
|
|
|
if uploaded_file:
|
|
|
|
img = Image.open(uploaded_file)
|
|
img = np.array(img)
|
|
|
|
|
|
st.write("π Detecting license plates...")
|
|
results = model.predict(img, conf=0.15, iou=0.3, classes=[0])
|
|
plates = results[0].boxes.xyxy if len(results) > 0 else []
|
|
|
|
if len(plates) == 0:
|
|
st.error("β No license plates detected. Try another image.")
|
|
else:
|
|
st.write("π **Select a License Plate by Clicking Below**")
|
|
|
|
|
|
if "selected_plate_index" not in st.session_state:
|
|
st.session_state.selected_plate_index = 0
|
|
|
|
selected_plate_index = st.session_state.get("selected_plate_index", 0)
|
|
cols = st.columns(len(plates))
|
|
|
|
for i, (x1, y1, x2, y2) in enumerate(plates):
|
|
plate_img = img[int(y1):int(y2), int(x1):int(x2)]
|
|
plate_img = Image.fromarray(plate_img)
|
|
|
|
with cols[i]:
|
|
st.image(plate_img, caption=f"Plate {i+1}", use_container_width =True)
|
|
if st.button(f"Select Plate {i+1}", key=f"plate_{i}"):
|
|
st.session_state["selected_plate_index"] = i
|
|
|
|
|
|
selected_index = st.session_state["selected_plate_index"]
|
|
x1, y1, x2, y2 = map(int, plates[selected_index])
|
|
cropped_plate = img[y1:y2, x1:x2]
|
|
refined_img = cropped_plate.copy()
|
|
|
|
|
|
st.sidebar.header("π§ Enhancement Options")
|
|
blur = st.sidebar.slider("πΉ Blur", 0, 10, 0)
|
|
contrast = st.sidebar.slider("πΉ Contrast", 0.5, 2.0, 1.0)
|
|
brightness = st.sidebar.slider("πΉ Brightness", 0.5, 2.0, 1.0)
|
|
gamma = st.sidebar.slider("Gamma Correction", 0.1, 3.0, 1.0, 0.1)
|
|
scale = st.sidebar.slider("πΉ Scale", 1.0, 10.0, 5.0)
|
|
noise = st.sidebar.checkbox("Noise Reduction (Bilateral)")
|
|
denoise = st.sidebar.checkbox("Denoise (Non-Local Means)")
|
|
sharpen = st.sidebar.checkbox("Sharpening")
|
|
hist_eq = st.sidebar.checkbox("Histogram Equalization")
|
|
clahe = st.sidebar.checkbox("CLAHE (Advanced Contrast)")
|
|
grayscale = st.sidebar.checkbox("Grayscale Conversion")
|
|
threshold = st.sidebar.checkbox("Adaptive Thresholding")
|
|
edges = st.sidebar.checkbox("Edge Detection")
|
|
invert = st.sidebar.checkbox("Invert Colors")
|
|
auto = st.sidebar.checkbox("Auto Enhancement")
|
|
|
|
refined_img = apply_filters(refined_img, noise, sharpen, grayscale, threshold, edges, invert, auto, blur, contrast, brightness, scale, denoise, hist_eq, gamma, clahe)
|
|
|
|
st.image(refined_img, caption="Refined License Plate", use_container_width=True)
|
|
|
|
if st.button("π Detect License Plate Text"):
|
|
with st.spinner("π Reading text..."):
|
|
ocr_result = reader.readtext(np.array(refined_img), detail=0, allowlist="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-")
|
|
plate_text = " ".join(ocr_result).upper() if ocr_result else "β No text detected."
|
|
|
|
|
|
st.subheader("π Detected License Plate:")
|
|
st.code(plate_text, language="plaintext") |