File size: 883 Bytes
e7a44ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
import torch.nn as nn

class LSTMClassifier(nn.Module):
    def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim, padding_idx):
        super(LSTMClassifier, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx)
        self.lstm = nn.LSTM(embed_dim, hidden_dim, num_layers=1, dropout=0.3, batch_first=True, bidirectional=True)
        self.fc1 = nn.Linear(hidden_dim * 2, hidden_dim)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        embedded = self.embedding(x)
        output, (hidden, _) = self.lstm(embedded)
        hidden_cat = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)  # concatenate last hidden states
        x = self.fc1(hidden_cat)
        x = self.relu(x)
        out = self.fc2(x)
        return out