import torch import torch.nn as nn class RNNClassifier(nn.Module): def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim, padding_idx): super(RNNClassifier, self).__init__() self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx) self.rnn = nn.RNN(embed_dim, hidden_dim, batch_first=True) self.fc1 = nn.Linear(hidden_dim, hidden_dim // 2) # New hidden layer self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_dim // 2, output_dim) def forward(self, x): embedded = self.embedding(x) # [batch_size, seq_len, embed_dim] output, hidden = self.rnn(embedded) # hidden: [1, batch_size, hidden_dim] x = self.fc1(hidden.squeeze(0)) # [batch_size, hidden_dim//2] x = self.relu(x) out = self.fc2(x) # [batch_size, output_dim] return out