import torch import torch.nn as nn from transformers import AutoModel class TransformerClassifier(nn.Module): def __init__(self, model_name, output_dim): super(TransformerClassifier, self).__init__() self.transformer = AutoModel.from_pretrained(model_name) # Freeze bottom 3 layers, unfreeze top layers for name, param in self.transformer.named_parameters(): if "layer.0" in name or "layer.1" in name or "layer.2" in name: param.requires_grad = False self.fc = nn.Linear(self.transformer.config.hidden_size, output_dim) def forward(self, input_ids, attention_mask): outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask) hidden_state = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim] pooled_output = hidden_state[:, 0] # Use CLS token output out = self.fc(pooled_output) return out