File size: 6,131 Bytes
1f1857d
 
 
 
 
 
 
943db67
 
 
1f1857d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch import nn
from torch import optim
from torch import functional as F
from einops import rearrange
import os
import pickle
#from modules.utils import *

from .utils import *



class Encoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.rnn = nn.RNN(input_size=config['z_dim'],
                          hidden_size=config['hidden_dim'],
                          num_layers=config['num_layer'])
        self.fc = nn.Linear(in_features=config['hidden_dim'],
                            out_features=config['hidden_dim'])

    def forward(self, x):
        x_enc, _ = self.rnn(x)
        x_enc = self.fc(x_enc)
        return x_enc
    

class Decoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.rnn = nn.RNN(input_size=config['hidden_dim'],
                          hidden_size=config['hidden_dim'],
                          num_layers=config['num_layer'])
        self.fc = nn.Linear(in_features=config['hidden_dim'],
                            out_features=config['z_dim'])

    def forward(self, x_enc):
        x_dec, _ = self.rnn(x_enc)
        x_dec = self.fc(x_dec)
        return x_dec
    

class Interpolator(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.sequence_inter = nn.Linear(in_features=(config['ts_size'] - config['total_mask_size']),
                                        out_features=config['ts_size'])
        self.feature_inter = nn.Linear(in_features=config['hidden_dim'],
                                       out_features=config['hidden_dim'])

    def forward(self, x):
        
        # x(bs, vis_size, hidden_dim)
        x = rearrange(x, 'b l f -> b f l')  # x(bs, hidden_dim, vis_size)
        x = self.sequence_inter(x)  # x(bs, hidden_dim, ts_size)
        x = rearrange(x, 'b f l -> b l f')  # x(bs, ts_size, hidden_dim)
        x = self.feature_inter(x)  # x(bs, ts_size, hidden_dim)
        return x
    
    
class StockEmbedder(nn.Module):
    def __init__(self, cfg: dict = None) -> None:

        """
        Args:
            cfg (dict):     {
                                'ts_size': 24,
                                'mask_size': 1,
                                'num_masks': 3,
                                'hidden_dim': 12,
                                'embed_dim': 6,
                                'num_layer': 3,
                                'z_dim': 6,
                                'num_embed': 32,
                                'stock_features': [],
                                'min_val': 0,
                                'max_val': 1e6
                            }

        """
        
        super().__init__()

        self.config = cfg
        
        self.config['total_mask_size'] = self.config['num_masks'] * self.config['mask_size']
        
        self.encoder = Encoder(config=self.config)
        self.interpolator = Interpolator(config=self.config)
        self.decoder = Decoder(config=self.config)


        print('StockEmbedder initialized')


    def mask_it(self,
                x: torch.Tensor,
                masks: torch.Tensor):
        
        # x.shape = (bs, ts_size, z_dim)
        
        b, l, f = x.shape
        x_visible = x[~masks.bool(), :].reshape(b, -1, f)  # (bs, vis_size, z_dim)
        
        return x_visible

    
    def forward_ae(self, x: torch.Tensor):
        
        """mae_pseudo_mask is equivalent to the Autoencoder
            There is no interpolator in this mode

        Args:
            x (torch.Tensor): shape: (bs, ts_size, z_dim)
        """
        
        out_encoder = self.encoder(x)
        out_decoder = self.decoder(out_encoder)
        
        return out_encoder, out_decoder

    
    def forward_mae(self,
                    x: torch.Tensor,
                    masks: torch.Tensor):
        
        """No mask tokens, using Interpolation in the latent space

        Args:
            x (torch.Tensor): shape: (bs, ts_size, z_dim)
            masks (torch.Tensor): 
        """
        
        x_vis = self.mask_it(x, masks=masks)  # (bs, vis_size, z_dim)
        out_encoder = self.encoder(x_vis)  # (bs, vis_size, hidden_dim)
        out_interpolator = self.interpolator(out_encoder)  # (bs, ts_size, hidden_dim)
        out_decoder = self.decoder(out_interpolator)  # (bs, ts_size, z_dim)
        
        return out_encoder, out_interpolator, out_decoder

    
    def forward(self,
                x: torch.Tensor,
                masks: torch.Tensor = None,
                mode: str = 'ae | mae'):
        
        x = torch.tensor(x, dtype=torch.float32)
        if masks is not None:
            masks = torch.tensor(masks, dtype=torch.float32)
        
        if mode == 'ae':
            out_encoder, out_decoder = self.forward_ae(x)
            
            return out_encoder, out_decoder
        
        elif mode == 'mae':
            out_encoder, out_interpolator, out_decoder = self.forward_mae(x, masks=masks)
            
            return out_encoder, out_interpolator, out_decoder

        
    def get_embedding(self,
                      stock_data: torch.Tensor,
                      embedding_used: str = 'encoder | decoder'):
        
        """get stock_embedding

        Args:
            stock_data (torch.Tensor): shape = (batch_size, stock_days, stock_features); NORMALIZED
        """
        
        with torch.no_grad():
            out_encoder, out_decoder = self.forward(stock_data, masks=None, mode='ae')
        
        if embedding_used == 'encoder':
            stock_embedding = out_encoder
        elif embedding_used == 'decoder':
            stock_embedding = out_decoder
        
        return stock_embedding
        
    
    def save(self, model_dir: str):
        os.makedirs(model_dir, exist_ok=True)
        
        # Save model:
        torch.save(obj=self.state_dict(), f=os.path.join(model_dir, 'model.pth'))
        # Save config:
        with open(file=os.path.join(model_dir, 'config.pkl'), mode='wb') as f:
            pickle.dump(obj=self.config, file=f)