from Models.modules.utils import * from Models.stock_embedder import * import streamlit as st import pandas as pd import os # Initializing model_dir = "ver_6_2" def main(): # Set up streamlit st.set_page_config(page_title="Stock Embedder", page_icon=":robot:", layout='centered') st.header("📈Stock Embedder📉") # Load model model = StockEmbedder(cfg = load_model_config(model_dir=model_dir)) # Upload files with st.sidebar: uploaded_file = st.file_uploader("Upload files", type='csv') # Read csv file if uploaded_file is not None: df = pd.read_csv(uploaded_file) st.write("Your uploaded data: ", df.head()) if st.button("Get Stock Embedding"): # Create data stock_data = torch.rand(128, model.config['ts_size'], model.config['z_dim']) stock_data = normalize(stock_data, min_val=model.config['min_val'], max_val=model.config['max_val']) st.write("Your stock data has been created: ", stock_data) # Get embedding stock_embedding = model.get_embedding(stock_data=stock_data, embedding_used='encoder') st.write("Your stock embedding has been created: ", stock_embedding) if __name__ == '__main__': main()