MCP-Utilities / Purify.py
Hyphonical's picture
✨ Update PurifyHtml function: change model loading to use 'jinaai/ReaderLM-v2' for improved performance.
3fa127c
from transformers import AutoTokenizer, AutoModelForCausalLM
from bs4 import BeautifulSoup, Tag
import datetime
import requests
import torch
import re
NoisePatterns = {
'(No)Script': r'<[ ]*(script|noscript)[^>]*?>.*?<\/[ ]*\1[ ]*>',
'Style': r'<[ ]*(style)[^>]*?>.*?<\/[ ]*\1[ ]*>',
'Svg': r'<[ ]*(svg)[^>]*?>.*?<\/[ ]*\1[ ]*>',
'Meta+Link': r'<[ ]*(meta|link)[^>]*?[\/]?[ ]*>',
'Comment': r'<[ ]*!--.*?--[ ]*>',
'Base64Img': r'<[ ]*img[^>]+src="data:image\/[^;]+;base64,[^"]+"[^>]*[\/]?[ ]*>',
'DocType': r'<!(DOCTYPE|doctype)[ ]*[a-z]*>',
'DataAttributes': r'[ ]+data-[\w-]+="[^"]*"',
'Classes': r'[ ]+class="[^"]*"',
'EmptyAttributes': r'[ ]+[a-z-]+=""',
'DateTime': r'[ ]+datetime="[^"]*"',
'EmptyTags': r'(?:<[ ]*([a-z]{1,10})[^>]*>[ \t\r\n]*){1,5}(?:<\/[ ]*\1[ ]*>){1,5}',
'EmptyLines': r'^[ \t]*\r?\n',
}
def RemoveNoise(RawHtml: str) -> str:
'''Remove noise from HTML content.
Args:
RawHtml (str): The raw HTML content.
Returns:
str: Cleaned HTML content without noise.
'''
CleanedHtml = RawHtml
for PatternName, Pattern in NoisePatterns.items():
if PatternName in ['EmptyLines', 'EmptyTags']: # These patterns are line-based
CleanedHtml = re.sub(Pattern, '', CleanedHtml, flags=re.MULTILINE)
else:
CleanedHtml = re.sub(Pattern, '', CleanedHtml, flags=re.DOTALL | re.IGNORECASE | re.MULTILINE)
return CleanedHtml
def FetchHtmlContent(Url: str) -> str | int:
'''Fetch HTML content from a URL.
Args:
Url (str): The URL to fetch HTML content from.
Returns:
str: The raw HTML content.
'''
Headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}
Response = requests.get(Url, headers=Headers)
if Response.status_code == 200:
return Response.text
else:
return Response.status_code
def PurifyHtml(Url: str) -> str: # type: ignore
Start = datetime.datetime.now()
RawHtml = FetchHtmlContent(Url)
if isinstance(RawHtml, str):
RawCharCount = len(RawHtml)
Soup = BeautifulSoup(RawHtml, 'html.parser')
PrettifiedHtml = str(Soup.prettify())
Title = Soup.title.string if Soup.title else 'No title found'
MetaDesc = Soup.find('meta', attrs={'name': 'description'})
Description = MetaDesc.get('content', 'No description found') if isinstance(MetaDesc, Tag) else 'No description found'
CleanedHtml = RemoveNoise(PrettifiedHtml)
CleanedCharCount = len(CleanedHtml)
Ratio = CleanedCharCount / RawCharCount if RawCharCount > 0 else 0
Summary = [
'<!-- --- Purification Summary ---',
f'URL: {Url}',
f'Title: {Title}',
f'Description: {Description}',
f'Time of Fetch: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} (Took {datetime.datetime.now() - Start})',
f'Noise Removal Ratio: {Ratio:.2%} (lower is better)',
f'Characters: {RawCharCount} -> {CleanedCharCount} ({RawCharCount - CleanedCharCount} characters removed)',
'----------------------------- -->'
]
for Line in Summary:
print(Line)
Tokenizer = AutoTokenizer.from_pretrained('jinaai/ReaderLM-v2')
Model = AutoModelForCausalLM.from_pretrained('jinaai/ReaderLM-v2', torch_dtype=torch.float32, device_map='cpu')
Prompt = f'Convert this HTML to markdown:\n\n{CleanedHtml}'
Inputs = Tokenizer(Prompt, return_tensors='pt', truncation=True, max_length=8192)
Outputs = Model.generate(Inputs.input_ids, max_new_tokens=8192, do_sample=False)
SummaryOutput = Tokenizer.decode(Outputs[0], skip_special_tokens=True)
return SummaryOutput[len(Prompt):].strip()
else:
print(f'Failed to fetch HTML content. Status code: {RawHtml}')