Spaces:
Running
Running
File size: 7,297 Bytes
9d9952b 9344624 9d9952b fc560eb 9d9952b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# app.py
import os
import uuid
import nltk
import trafilatura
import chromadb
import tiktoken
import gradio as gr
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_together import ChatTogether
from langchain_community.vectorstores import Chroma
from sentence_transformers import SentenceTransformer
from nltk.tokenize import sent_tokenize
from langchain_huggingface import HuggingFaceEmbeddings
# Download NLTK resources
nltk.download('punkt')
nltk.download('punkt_tab')
# Initialize tokenizer
tokenizer = tiktoken.get_encoding("cl100k_base")
# Initialize embedding model
embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# Initialize ChromaDB
chroma_client = chromadb.PersistentClient(path="./chroma_store")
collection = chroma_client.get_or_create_collection(name="imageonline_chunks")
# Sectioned URL List
url_dict = {
"Website Designing": [
"https://www.imageonline.co.in/website-designing-mumbai.html",
"https://www.imageonline.co.in/domain-hosting-services-india.html",
"https://www.imageonline.co.in/best-seo-company-mumbai.html",
"https://www.imageonline.co.in/wordpress-blog-designing-india.html",
"https://www.imageonline.co.in/social-media-marketing-company-mumbai.html",
"https://www.imageonline.co.in/website-template-customization-india.html",
"https://www.imageonline.co.in/regular-website-maintanence-services.html",
"https://www.imageonline.co.in/mobile-app-designing-mumbai.html",
"https://www.imageonline.co.in/web-application-screen-designing.html"
],
"Website Development": [
"https://www.imageonline.co.in/website-development-mumbai.html",
"https://www.imageonline.co.in/open-source-customization.html",
"https://www.imageonline.co.in/ecommerce-development-company-mumbai.html",
"https://www.imageonline.co.in/website-with-content-management-system.html",
"https://www.imageonline.co.in/web-application-development-india.html"
],
"Mobile App Development": [
"https://www.imageonline.co.in/mobile-app-development-company-mumbai.html"
],
"About Us": [
"https://www.imageonline.co.in/about-us.html",
"https://www.imageonline.co.in/vision.html",
"https://www.imageonline.co.in/team.html"
],
"Testimonials": [
"https://www.imageonline.co.in/testimonial.html"
]
}
# Helper functions
def extract_clean_text(url):
try:
print(f"π Fetching URL: {url}")
downloaded = trafilatura.fetch_url(url)
if downloaded:
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
print(f"β
Extracted text from {url}")
return content
else:
print(f"β οΈ Failed to fetch content from {url}")
except Exception as e:
print(f"β Error fetching {url}: {e}")
return None
def chunk_text(text, max_tokens=400):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
for sentence in sentences:
current_chunk.append(sentence)
tokens = tokenizer.encode(" ".join(current_chunk))
if len(tokens) > max_tokens:
current_chunk.pop()
chunks.append(" ".join(current_chunk).strip())
current_chunk = [sentence]
if current_chunk:
chunks.append(" ".join(current_chunk).strip())
print(f"π Text split into {len(chunks)} chunks.")
return chunks
# Check refresh override
force_refresh = os.getenv("FORCE_REFRESH", "false").lower() == "true"
# Load data into ChromaDB
if collection.count() == 0 or force_refresh:
print("π Loading documents into ChromaDB...")
for section, urls in url_dict.items():
for url in urls:
text = extract_clean_text(url)
if not text:
continue
chunks = chunk_text(text)
embeddings = embedding_model.encode(chunks, convert_to_numpy=True)
metadatas = [{"source": url, "section": section} for _ in chunks]
ids = [str(uuid.uuid4()) for _ in chunks]
collection.add(
documents=chunks,
embeddings=embeddings.tolist(),
metadatas=metadatas,
ids=ids
)
print("β
Document loading complete.")
else:
print("β
Using existing ChromaDB collection.")
# Vectorstore & Retriever
vectorstore = Chroma(
client=chroma_client,
collection_name="imageonline_chunks",
embedding_function=embedding_function
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# Together.ai LLM
llm = ChatTogether(
model="meta-llama/Llama-3-8b-chat-hf",
temperature=0.3,
max_tokens=1024,
top_p=0.7,
together_api_key=os.getenv("TOGETHER_API_KEY")
)
# Prompt template (refined)
prompt = ChatPromptTemplate.from_template("""
You are a helpful assistant for ImageOnline Web Solutions.
Use ONLY the information provided in the context to answer the user's query.
Context:
{context}
Question:
{question}
If the answer is not found in the context, say "I'm sorry, I don't have enough information to answer that."
""")
# Context retrieval
def retrieve_and_format(query):
docs = retriever.get_relevant_documents(query)
context_strings = []
for doc in docs:
content = doc.page_content
metadata = doc.metadata
source = metadata.get("source", "")
section = metadata.get("section", "")
context_strings.append(f"[{section}] {content}\n(Source: {source})")
return "\n\n".join(context_strings)
# RAG chain
rag_chain = (
{"context": RunnableLambda(retrieve_and_format), "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Gradio Interface
def chat_interface(message, history):
history = history or []
history.append(("π§ You: " + message, "β³ Generating response..."))
try:
answer = rag_chain.invoke(message)
history[-1] = ("π§ You: " + message, "π€ Bot: " + answer)
except Exception as e:
error_msg = f"β οΈ Error: {str(e)}"
history[-1] = ("π§ You: " + message, f"π€ Bot: {error_msg}")
return history, history
def launch_gradio():
with gr.Blocks() as demo:
gr.Markdown("# π¬ ImageOnline RAG Chatbot")
gr.Markdown("Ask about Website Designing, App Development, SEO, Hosting, etc.")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
send_btn = gr.Button("π¨ Send", scale=1)
msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
with gr.Row():
clear_btn = gr.Button("π§Ή Clear Chat")
clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
return demo
if __name__ == "__main__":
demo = launch_gradio()
demo.launch()
|