# app.py import logging import re import requests import numpy as np import faiss import gradio as gr from bs4 import BeautifulSoup from sentence_transformers import SentenceTransformer from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.llms import Together from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.summarize import load_summarize_chain from langchain.docstore.document import Document from langchain.chains import RetrievalQA # Logging setup logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load Embedding Model logger.info("🔍 Loading sentence transformer...") embed_model = SentenceTransformer("all-MiniLM-L6-v2") # Load LLM (Replace with your API Key) llm = Together( model="togethercomputer/llama-3-70b-chat", temperature=0.7, max_tokens=512, together_api_key="your_together_api_key" ) def fetch_webpage_text(url): try: response = requests.get(url) response.raise_for_status() soup = BeautifulSoup(response.text, "html.parser") content_div = soup.find("div", {"id": "mw-content-text"}) or soup.body return content_div.get_text(separator="\n", strip=True) except Exception as e: logger.error(f"Error fetching content: {e}") return "" def clean_text(text): text = re.sub(r'\[\s*\d+\s*\]', '', text) text = re.sub(r'\[\s*[a-zA-Z]+\s*\]', '', text) text = re.sub(r'^\[\s*\d+\s*\]$', '', text, flags=re.MULTILINE) text = re.sub(r'\n{2,}', '\n', text) text = re.sub(r'[ \t]+', ' ', text) return text.strip() def chunk_text(text, chunk_size=500, overlap=50): splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=overlap ) return splitter.split_text(text) def create_vectorstore(chunks): texts = [chunk for chunk in chunks] embeddings = [embed_model.encode(text) for text in texts] dim = embeddings[0].shape[0] index = faiss.IndexFlatL2(dim) index.add(np.array(embeddings).astype(np.float32)) return index, texts, embeddings def get_summary(chunks): full_doc = Document(page_content="\n\n".join(chunks)) summarize_chain = load_summarize_chain(llm, chain_type="map_reduce") return summarize_chain.run([full_doc]) def retrieve_answer(query, chunks, embeddings, texts): query_vector = embed_model.encode(query).astype(np.float32) index = faiss.IndexFlatL2(embeddings[0].shape[0]) index.add(np.array(embeddings).astype(np.float32)) D, I = index.search(np.array([query_vector]), k=5) top_chunks = [texts[i] for i in I[0]] rag_doc = "\n\n".join(top_chunks) qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=None) return qa_chain.run(input_documents=[Document(page_content=rag_doc)], question=query) # Gradio Interface def run_chatbot(url, query): raw_text = fetch_webpage_text(url) if not raw_text: return "❌ Failed to fetch content.", "" cleaned = clean_text(raw_text) chunks = chunk_text(cleaned) if not chunks: return "❌ No valid content to process.", "" summary = get_summary(chunks) index, texts, embeddings = create_vectorstore(chunks) answer = retrieve_answer(query, chunks, embeddings, texts) return summary, answer demo = gr.Interface( fn=run_chatbot, inputs=[ gr.Textbox(label="Webpage URL", placeholder="Enter a Wikipedia link"), gr.Textbox(label="Your Question", placeholder="Ask a question about the webpage") ], outputs=[ gr.Textbox(label="Webpage Summary"), gr.Textbox(label="Answer") ], title="🦙 LLaMA RAG Chatbot", description="Enter a Wikipedia article URL and ask a question. Powered by Together AI and LangChain.", allow_flagging="never" ) if __name__ == "__main__": demo.launch()