Ikastrious / app.py
IbarakiDouji's picture
feat: added Ikastrious
4430c21 verified
import spaces
import os
import gc
import gradio as gr
import torch
import json
import utils
import logging
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLImg2ImgPipeline
from config import (
MODELS,
MIN_IMAGE_SIZE,
MAX_IMAGE_SIZE,
OUTPUT_DIR,
DEFAULT_NEGATIVE_PROMPT,
DEFAULT_ASPECT_RATIO,
QUALITY_TAGS,
examples,
sampler_list,
aspect_ratios,
css
)
import time
from typing import List, Dict, Tuple
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Constants
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
class GenerationError(Exception):
"""Custom exception for generation errors"""
pass
def validate_prompt(prompt: str) -> str:
"""Validate and clean up the input prompt."""
if not isinstance(prompt, str):
raise GenerationError("Prompt must be a string")
try:
# Ensure proper UTF-8 encoding/decoding
prompt = prompt.encode('utf-8').decode('utf-8')
# Add space between ! and ,
prompt = prompt.replace("!,", "! ,")
except UnicodeError:
raise GenerationError("Invalid characters in prompt")
# Only check if the prompt is completely empty or only whitespace
if not prompt or prompt.isspace():
raise GenerationError("Prompt cannot be empty")
return prompt.strip()
def validate_dimensions(width: int, height: int) -> None:
"""Validate image dimensions."""
if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = DEFAULT_NEGATIVE_PROMPT,
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 6.0,
num_inference_steps: int = 25,
sampler: str = "Euler a",
model_name: str = "v14",
aspect_ratio_selector: str = DEFAULT_ASPECT_RATIO,
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
add_quality_tags: bool = True,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[List[str], Dict]:
"""Generate images based on the given parameters."""
start_time = time.time()
upscaler_pipe = None
backup_scheduler = None
try:
# Memory management
torch.cuda.empty_cache()
gc.collect()
# Input validation
prompt = validate_prompt(prompt)
if negative_prompt:
negative_prompt = negative_prompt.encode('utf-8').decode('utf-8')
validate_dimensions(custom_width, custom_height)
# Set up generation
generator = utils.seed_everything(seed)
width, height = utils.aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
# Process prompts
if add_quality_tags:
prompt = QUALITY_TAGS.format(prompt=prompt)
prompt, negative_prompt = utils.preprocess_prompt(
prompt, negative_prompt
)
width, height = utils.preprocess_image_dimensions(width, height)
# Set up pipeline
pipe = pipes[model_name]
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
# Prepare metadata
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
"Model": "Ikastrious " + model_name
}
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
logger.info(f"Starting generation with parameters: {json.dumps(metadata, indent=4)}")
# Generate images
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images
# Save images
if images:
total = len(images)
image_paths = []
for idx, image in enumerate(images, 1):
progress(idx/total, desc="Saving images...")
path = utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
image_paths.append(path)
logger.info(f"Image {idx}/{total} saved as {path}")
generation_time = time.time() - start_time
logger.info(f"Generation completed successfully in {generation_time:.2f} seconds")
metadata["generation_time"] = f"{generation_time:.2f}s"
return image_paths, metadata
except GenerationError as e:
logger.warning(f"Generation validation error: {str(e)}")
raise gr.Error(str(e))
except Exception as e:
logger.exception("Unexpected error during generation")
raise gr.Error(f"Generation failed: {str(e)}")
finally:
# Cleanup
torch.cuda.empty_cache()
gc.collect()
if upscaler_pipe is not None:
del upscaler_pipe
if backup_scheduler is not None and pipe is not None:
pipe.scheduler = backup_scheduler
utils.free_memory()
# Model initialization
if torch.cuda.is_available():
pipes = {}
try:
logger.info("Loading VAE and pipeline...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
for model in MODELS:
pipes[model['name']] = utils.load_pipeline(model['path'], device, vae=vae)
logger.info(f"Pipeline for {model} loaded successfully on GPU!")
logger.info("Pipeline loaded successfully on GPU!")
except Exception as e:
logger.error(f"Error loading VAE, falling back to default: {e}")
for model in MODELS:
if model['name'] not in pipes:
pipes[model['name']] = utils.load_pipeline(model['path'], device)
logger.info(f"Pipeline for {model} loaded successfully on GPU!")
else:
logger.warning("CUDA not available, running on CPU")
# check if os.environ keys have VSCODE, if not, load the model on CPU
skip = False
for key in dict(os.environ).keys():
if "VSCODE" in key:
skip = True
break
if not skip:
logger.info("Loading pipeline on CPU...")
pipe = utils.load_pipeline(MODELS[0]['name'], torch.device("cpu"))
logger.info("Pipeline loaded successfully on CPU!")
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme_5") as demo:
gr.HTML(
"""
<div class="header">
<div class="title">Ikastrious</div>
<div class="subtitle">Gradio demo for <a href="https://civitai.com/models/874216" target="_blank">Ikastrious</a></div>
<span class="thanks">Thanks to <a href="https://huggingface.co/Asahina2K">Asahina2K</a> for the space code base</span>
</div>
""",
)
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Describe what you want to generate",
info="Enter your image generation prompt here. Be specific and descriptive for better results.",
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Describe what you want to avoid",
value=DEFAULT_NEGATIVE_PROMPT,
info="Specify elements you don't want in the image.",
)
add_quality_tags = gr.Checkbox(
label="Quality Tags",
value=True,
info="Add quality-enhancing tags to your prompt automatically.",
)
model_name = gr.Radio(
label="Model",
choices=[model['name'] for model in MODELS],
value=MODELS[0]['name'],
container=True,
info="Select the model to use for image generation.",
)
with gr.Accordion(label="More Settings", open=False):
with gr.Group():
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=aspect_ratios,
value=DEFAULT_ASPECT_RATIO,
container=True,
info="Choose the dimensions of your image.",
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1536,
info=f"Image width (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})",
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1536,
info=f"Image height (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})",
)
with gr.Group():
use_upscaler = gr.Checkbox(
label="Use Upscaler",
value=False,
info="Enable high-resolution upscaling.",
)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
info="Control how much the upscaler affects the final image.",
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
info="Multiplier for the final image resolution.",
)
with gr.Accordion(label="Advanced Parameters", open=False):
with gr.Group():
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
info="Different samplers can produce varying results.",
)
with gr.Group():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=utils.MAX_SEED,
step=1,
value=0,
info="Set a specific seed for reproducible results.",
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
info="Generate a new random seed for each image.",
)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=4.5,
info="Higher values make the image more closely match your prompt.",
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
info="More steps generally mean higher quality but slower generation.",
)
with gr.Column(scale=3):
with gr.Blocks():
run_button = gr.Button("Generate", variant="primary", elem_id="generate-button")
result = gr.Gallery(
label="Generated Images",
columns=1,
height='768px',
preview=True,
show_label=True,
)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(
label="Image Metadata",
show_label=True,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
# Combine all triggers including keyboard shortcuts
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=lambda: gr.update(interactive=False, value="Generating..."),
outputs=run_button,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
sampler,
model_name,
aspect_ratio_selector,
use_upscaler,
upscaler_strength,
upscale_by,
add_quality_tags,
],
outputs=[result, gr_metadata],
).then(
fn=lambda: gr.update(interactive=True, value="Generate"),
outputs=run_button,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)