Ikastrious / utils.py
IbarakiDouji's picture
feat: added Ikastrious
4430c21 verified
import gc
import os
import random
import numpy as np
import json
import torch
import uuid
from PIL import PngImagePlugin
from datetime import datetime
from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple, Any
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
AutoencoderKL,
)
from lpw_stable_diffusion_xl import SDXLLongPromptWeightingPipeline
import logging
MAX_SEED = np.iinfo(np.int32).max
@dataclass
class StyleConfig:
prompt: str
negative_prompt: str
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]:
if aspect_ratio == "Custom":
return None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(
aspect_ratio: str, custom_width: int, custom_height: int
) -> Tuple[int, int]:
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def free_memory() -> None:
"""Free up GPU and system memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def preprocess_prompt(
positive: str,
negative: str = "",
add_style: bool = True,
) -> Tuple[str, str]:
formatted_positive = positive
combined_negative = ""
if negative.strip():
if combined_negative:
combined_negative += ", " + negative
else:
combined_negative = negative
return formatted_positive, combined_negative
def common_upscale(
samples: torch.Tensor,
width: int,
height: int,
upscale_method: str,
) -> torch.Tensor:
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(
samples: torch.Tensor, upscale_method: str, scale_by: float
) -> torch.Tensor:
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
return common_upscale(samples, width, height, upscale_method)
def preprocess_image_dimensions(width, height):
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
return width, height
def save_image(image, metadata, output_dir, is_colab):
if is_colab:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{current_time}.png"
else:
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("parameters", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
def is_google_colab():
try:
import google.colab
return True
except:
return False
def load_pipeline(model_name: str, device: torch.device, hf_token: Optional[str] = None, vae: Optional[AutoencoderKL] = None) -> Any:
"""Load the Stable Diffusion pipeline."""
try:
pipeline = (
SDXLLongPromptWeightingPipeline.from_single_file
if model_name.endswith(".safetensors")
else SDXLLongPromptWeightingPipeline.from_pretrained
)
pipe = pipeline(
model_name,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False
)
pipe.to(device)
return pipe
except Exception as e:
logging.error(f"Failed to load pipeline: {str(e)}", exc_info=True)
raise