import gc import os import random import numpy as np import json import torch import uuid from PIL import PngImagePlugin from datetime import datetime from dataclasses import dataclass from typing import Callable, Dict, Optional, Tuple, Any from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, AutoencoderKL, ) from lpw_stable_diffusion_xl import SDXLLongPromptWeightingPipeline import logging MAX_SEED = np.iinfo(np.int32).max @dataclass class StyleConfig: prompt: str negative_prompt: str def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def seed_everything(seed: int) -> torch.Generator: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) generator = torch.Generator() generator.manual_seed(seed) return generator def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]: if aspect_ratio == "Custom": return None width, height = aspect_ratio.split(" x ") return int(width), int(height) def aspect_ratio_handler( aspect_ratio: str, custom_width: int, custom_height: int ) -> Tuple[int, int]: if aspect_ratio == "Custom": return custom_width, custom_height else: width, height = parse_aspect_ratio(aspect_ratio) return width, height def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]: scheduler_factory_map = { "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config( scheduler_config, use_karras_sigmas=True ), "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config( scheduler_config, use_karras_sigmas=True ), "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config( scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" ), "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config( scheduler_config ), "DDIM": lambda: DDIMScheduler.from_config(scheduler_config), } return scheduler_factory_map.get(name, lambda: None)() def free_memory() -> None: """Free up GPU and system memory.""" if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() gc.collect() def preprocess_prompt( positive: str, negative: str = "", add_style: bool = True, ) -> Tuple[str, str]: formatted_positive = positive combined_negative = "" if negative.strip(): if combined_negative: combined_negative += ", " + negative else: combined_negative = negative return formatted_positive, combined_negative def common_upscale( samples: torch.Tensor, width: int, height: int, upscale_method: str, ) -> torch.Tensor: return torch.nn.functional.interpolate( samples, size=(height, width), mode=upscale_method ) def upscale( samples: torch.Tensor, upscale_method: str, scale_by: float ) -> torch.Tensor: width = round(samples.shape[3] * scale_by) height = round(samples.shape[2] * scale_by) return common_upscale(samples, width, height, upscale_method) def preprocess_image_dimensions(width, height): if width % 8 != 0: width = width - (width % 8) if height % 8 != 0: height = height - (height % 8) return width, height def save_image(image, metadata, output_dir, is_colab): if is_colab: current_time = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{current_time}.png" else: filename = str(uuid.uuid4()) + ".png" os.makedirs(output_dir, exist_ok=True) filepath = os.path.join(output_dir, filename) metadata_str = json.dumps(metadata) info = PngImagePlugin.PngInfo() info.add_text("parameters", metadata_str) image.save(filepath, "PNG", pnginfo=info) return filepath def is_google_colab(): try: import google.colab return True except: return False def load_pipeline(model_name: str, device: torch.device, hf_token: Optional[str] = None, vae: Optional[AutoencoderKL] = None) -> Any: """Load the Stable Diffusion pipeline.""" try: pipeline = ( SDXLLongPromptWeightingPipeline.from_single_file if model_name.endswith(".safetensors") else SDXLLongPromptWeightingPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False ) pipe.to(device) return pipe except Exception as e: logging.error(f"Failed to load pipeline: {str(e)}", exc_info=True) raise