Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,977 Bytes
fba9477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import time
from subprocess import CalledProcessError
from typing import Dict, List
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures
from indextts.utils.front import TextNormalizer, TextTokenizer
class IndexTTS:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, device=None,
use_cuda_kernel=None,
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
is_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
"""
if device is not None:
self.device = device
self.is_fp16 = False if device == "cpu" else is_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.is_fp16 = is_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.is_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.is_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.is_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
# Comment-off to load the VQ-VAE model for debugging tokenizer
# https://github.com/index-tts/index-tts/issues/34
#
# from indextts.vqvae.xtts_dvae import DiscreteVAE
# self.dvae = DiscreteVAE(**self.cfg.vqvae)
# self.dvae_path = os.path.join(self.model_dir, self.cfg.dvae_checkpoint)
# load_checkpoint(self.dvae, self.dvae_path)
# self.dvae = self.dvae.to(self.device)
# if self.is_fp16:
# self.dvae.eval().half()
# else:
# self.dvae.eval()
# print(">> vqvae weights restored from:", self.dvae_path)
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.is_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if self.is_fp16:
try:
import deepspeed
use_deepspeed = True
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> DeepSpeed加载失败,回退到标准推理: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
else:
self.gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
self.bigvgan.load_state_dict(vocoder_dict["generator"])
self.bigvgan = self.bigvgan.to(self.device)
# remove weight norm on eval mode
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", self.bigvgan_path)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
# 缓存参考音频mel:
self.cache_audio_prompt = None
self.cache_cond_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def bucket_sentences(self, sentences, bucket_max_size=4) -> List[List[Dict]]:
"""
Sentence data bucketing.
if ``bucket_max_size=1``, return all sentences in one bucket.
"""
outputs: List[Dict] = []
for idx, sent in enumerate(sentences):
outputs.append({"idx": idx, "sent": sent, "len": len(sent)})
if len(outputs) > bucket_max_size:
# split sentences into buckets by sentence length
buckets: List[List[Dict]] = []
factor = 1.5
last_bucket = None
last_bucket_sent_len_median = 0
for sent in sorted(outputs, key=lambda x: x["len"]):
current_sent_len = sent["len"]
if current_sent_len == 0:
print(">> skip empty sentence")
continue
if last_bucket is None \
or current_sent_len >= int(last_bucket_sent_len_median * factor) \
or len(last_bucket) >= bucket_max_size:
# new bucket
buckets.append([sent])
last_bucket = buckets[-1]
last_bucket_sent_len_median = current_sent_len
else:
# current bucket can hold more sentences
last_bucket.append(sent) # sorted
mid = len(last_bucket) // 2
last_bucket_sent_len_median = last_bucket[mid]["len"]
last_bucket = None
# merge all buckets with size 1
out_buckets: List[List[Dict]] = []
only_ones: List[Dict] = []
for b in buckets:
if len(b) == 1:
only_ones.append(b[0])
else:
out_buckets.append(b)
if len(only_ones) > 0:
# merge into previous buckets if possible
# print("only_ones:", [(o["idx"], o["len"]) for o in only_ones])
for i in range(len(out_buckets)):
b = out_buckets[i]
if len(b) < bucket_max_size:
b.append(only_ones.pop(0))
if len(only_ones) == 0:
break
# combined all remaining sized 1 buckets
if len(only_ones) > 0:
out_buckets.extend(
[only_ones[i:i + bucket_max_size] for i in range(0, len(only_ones), bucket_max_size)])
return out_buckets
return [outputs]
def pad_tokens_cat(self, tokens: List[torch.Tensor]) -> torch.Tensor:
if self.model_version and self.model_version >= 1.5:
# 1.5版本以上,直接使用stop_text_token 右侧填充,填充到最大长度
# [1, N] -> [N,]
tokens = [t.squeeze(0) for t in tokens]
return pad_sequence(tokens, batch_first=True, padding_value=self.cfg.gpt.stop_text_token,
padding_side="right")
max_len = max(t.size(1) for t in tokens)
outputs = []
for tensor in tokens:
pad_len = max_len - tensor.size(1)
if pad_len > 0:
n = min(8, pad_len)
tensor = torch.nn.functional.pad(tensor, (0, n), value=self.cfg.gpt.stop_text_token)
tensor = torch.nn.functional.pad(tensor, (0, pad_len - n), value=self.cfg.gpt.start_text_token)
tensor = tensor[:, :max_len]
outputs.append(tensor)
tokens = torch.cat(outputs, dim=0)
return tokens
def torch_empty_cache(self):
try:
if "cuda" in str(self.device):
torch.cuda.empty_cache()
elif "mps" in str(self.device):
torch.mps.empty_cache()
except Exception as e:
pass
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 快速推理:对于“多句长文本”,可实现至少 2~10 倍以上的速度提升~ (First modified by sunnyboxs 2025-04-16)
def infer_fast(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_sentence=100,
sentences_bucket_max_size=4, **generation_kwargs):
"""
Args:
``max_text_tokens_per_sentence``: 分句的最大token数,默认``100``,可以根据GPU硬件情况调整
- 越小,batch 越多,推理速度越*快*,占用内存更多,可能影响质量
- 越大,batch 越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
``sentences_bucket_max_size``: 分句分桶的最大容量,默认``4``,可以根据GPU内存调整
- 越大,bucket数量越少,batch越多,推理速度越*快*,占用内存更多,可能影响质量
- 越小,bucket数量越多,batch越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
"""
print(">> start fast inference...")
self._set_gr_progress(0, "start fast inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
auto_conditioning = cond_mel
cond_mel_lengths = torch.tensor([cond_mel_frame], device=self.device)
# text_tokens
text_tokens_list = self.tokenizer.tokenize(text)
sentences = self.tokenizer.split_sentences(text_tokens_list,
max_tokens_per_sentence=max_text_tokens_per_sentence)
if verbose:
print(">> text token count:", len(text_tokens_list))
print(" splited sentences count:", len(sentences))
print(" max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
print(*sentences, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
# text processing
all_text_tokens: List[List[torch.Tensor]] = []
self._set_gr_progress(0.1, "text processing...")
bucket_max_size = sentences_bucket_max_size if self.device != "cpu" else 1
all_sentences = self.bucket_sentences(sentences, bucket_max_size=bucket_max_size)
bucket_count = len(all_sentences)
if verbose:
print(">> sentences bucket_count:", bucket_count,
"bucket sizes:", [(len(s), [t["idx"] for t in s]) for s in all_sentences],
"bucket_max_size:", bucket_max_size)
for sentences in all_sentences:
temp_tokens: List[torch.Tensor] = []
all_text_tokens.append(temp_tokens)
for item in sentences:
sent = item["sent"]
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as sentence tokens", text_token_syms == sent)
temp_tokens.append(text_tokens)
# Sequential processing of bucketing data
all_batch_num = sum(len(s) for s in all_sentences)
all_batch_codes = []
processed_num = 0
for item_tokens in all_text_tokens:
batch_num = len(item_tokens)
if batch_num > 1:
batch_text_tokens = self.pad_tokens_cat(item_tokens)
else:
batch_text_tokens = item_tokens[0]
processed_num += batch_num
# gpt speech
self._set_gr_progress(0.2 + 0.3 * processed_num / all_batch_num,
f"gpt inference speech... {processed_num}/{all_batch_num}")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(batch_text_tokens.device.type, enabled=self.dtype is not None,
dtype=self.dtype):
temp_codes = self.gpt.inference_speech(auto_conditioning, batch_text_tokens,
cond_mel_lengths=cond_mel_lengths,
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
all_batch_codes.append(temp_codes)
gpt_gen_time += time.perf_counter() - m_start_time
# gpt latent
self._set_gr_progress(0.5, "gpt inference latents...")
all_idxs = []
all_latents = []
has_warned = False
for batch_codes, batch_tokens, batch_sentences in zip(all_batch_codes, all_text_tokens, all_sentences):
for i in range(batch_codes.shape[0]):
codes = batch_codes[i] # [x]
if not has_warned and codes[-1] != self.stop_mel_token:
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
codes = codes.unsqueeze(0) # [x] -> [1, x]
if verbose:
print("codes:", codes.shape)
print(codes)
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print("fix codes:", codes.shape)
print(codes)
print("code_lens:", code_lens)
text_tokens = batch_tokens[i]
all_idxs.append(batch_sentences[i]["idx"])
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
all_latents.append(latent)
del all_batch_codes, all_text_tokens, all_sentences
# bigvgan chunk
chunk_size = 2
all_latents = [all_latents[all_idxs.index(i)] for i in range(len(all_latents))]
if verbose:
print(">> all_latents:", len(all_latents))
print(" latents length:", [l.shape[1] for l in all_latents])
chunk_latents = [all_latents[i: i + chunk_size] for i in range(0, len(all_latents), chunk_size)]
chunk_length = len(chunk_latents)
latent_length = len(all_latents)
# bigvgan chunk decode
self._set_gr_progress(0.7, "bigvgan decode...")
tqdm_progress = tqdm(total=latent_length, desc="bigvgan")
for items in chunk_latents:
tqdm_progress.update(len(items))
latent = torch.cat(items, dim=1)
with torch.no_grad():
with torch.amp.autocast(latent.device.type, enabled=self.dtype is not None, dtype=self.dtype):
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
pass
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
wavs.append(wav.cpu()) # to cpu before saving
# clear cache
tqdm_progress.close() # 确保进度条被关闭
del all_latents, chunk_latents
end_time = time.perf_counter()
self.torch_empty_cache()
# wav audio output
self._set_gr_progress(0.9, "save audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total fast inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> [fast] bigvgan chunk_length: {chunk_length}")
print(f">> [fast] batch_num: {all_batch_num} bucket_max_size: {bucket_max_size}",
f"bucket_count: {bucket_count}" if bucket_max_size > 1 else "")
print(f">> [fast] RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
# 原始推理模式
def infer(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_sentence=120,
**generation_kwargs):
print(">> start inference...")
self._set_gr_progress(0, "start inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
self._set_gr_progress(0.1, "text processing...")
auto_conditioning = cond_mel
text_tokens_list = self.tokenizer.tokenize(text)
sentences = self.tokenizer.split_sentences(text_tokens_list, max_text_tokens_per_sentence)
if verbose:
print("text token count:", len(text_tokens_list))
print("sentences count:", len(sentences))
print("max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
print(*sentences, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
progress = 0
has_warned = False
for sent in sentences:
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
# text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
# text_tokens = F.pad(text_tokens, (1, 0), value=0)
# text_tokens = F.pad(text_tokens, (0, 1), value=1)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as sentence tokens", text_token_syms == sent)
# text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
# print(text_len)
progress += 1
self._set_gr_progress(0.2 + 0.4 * (progress - 1) / len(sentences),
f"gpt inference latent... {progress}/{len(sentences)}")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
codes = self.gpt.inference_speech(auto_conditioning, text_tokens,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
if verbose:
print(codes, type(codes))
print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
# remove ultra-long silence if exits
# temporarily fix the long silence bug.
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
self._set_gr_progress(0.2 + 0.4 * progress / len(sentences),
f"gpt inference speech... {progress}/{len(sentences)}")
m_start_time = time.perf_counter()
# latent, text_lens_out, code_lens_out = \
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "save audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'
tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)
|