File size: 33,977 Bytes
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import os

os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import time
from subprocess import CalledProcessError
from typing import Dict, List

import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures

from indextts.utils.front import TextNormalizer, TextTokenizer


class IndexTTS:
    def __init__(
            self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, device=None,
            use_cuda_kernel=None,
    ):
        """
        Args:
            cfg_path (str): path to the config file.
            model_dir (str): path to the model directory.
            is_fp16 (bool): whether to use fp16.
            device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
            use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
        """
        if device is not None:
            self.device = device
            self.is_fp16 = False if device == "cpu" else is_fp16
            self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
        elif torch.cuda.is_available():
            self.device = "cuda:0"
            self.is_fp16 = is_fp16
            self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
        elif hasattr(torch, "mps") and torch.backends.mps.is_available():
            self.device = "mps"
            self.is_fp16 = False  # Use float16 on MPS is overhead than float32
            self.use_cuda_kernel = False
        else:
            self.device = "cpu"
            self.is_fp16 = False
            self.use_cuda_kernel = False
            print(">> Be patient, it may take a while to run in CPU mode.")

        self.cfg = OmegaConf.load(cfg_path)
        self.model_dir = model_dir
        self.dtype = torch.float16 if self.is_fp16 else None
        self.stop_mel_token = self.cfg.gpt.stop_mel_token

        # Comment-off to load the VQ-VAE model for debugging tokenizer
        #   https://github.com/index-tts/index-tts/issues/34
        #
        # from indextts.vqvae.xtts_dvae import DiscreteVAE
        # self.dvae = DiscreteVAE(**self.cfg.vqvae)
        # self.dvae_path = os.path.join(self.model_dir, self.cfg.dvae_checkpoint)
        # load_checkpoint(self.dvae, self.dvae_path)
        # self.dvae = self.dvae.to(self.device)
        # if self.is_fp16:
        #     self.dvae.eval().half()
        # else:
        #     self.dvae.eval()
        # print(">> vqvae weights restored from:", self.dvae_path)
        self.gpt = UnifiedVoice(**self.cfg.gpt)
        self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
        load_checkpoint(self.gpt, self.gpt_path)
        self.gpt = self.gpt.to(self.device)
        if self.is_fp16:
            self.gpt.eval().half()
        else:
            self.gpt.eval()
        print(">> GPT weights restored from:", self.gpt_path)
        if self.is_fp16:
            try:
                import deepspeed

                use_deepspeed = True
            except (ImportError, OSError, CalledProcessError) as e:
                use_deepspeed = False
                print(f">> DeepSpeed加载失败,回退到标准推理: {e}")

            self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
        else:
            self.gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)

        if self.use_cuda_kernel:
            # preload the CUDA kernel for BigVGAN
            try:
                from indextts.BigVGAN.alias_free_activation.cuda import load

                anti_alias_activation_cuda = load.load()
                print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
            except:
                print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
                self.use_cuda_kernel = False
        self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
        self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
        vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
        self.bigvgan.load_state_dict(vocoder_dict["generator"])
        self.bigvgan = self.bigvgan.to(self.device)
        # remove weight norm on eval mode
        self.bigvgan.remove_weight_norm()
        self.bigvgan.eval()
        print(">> bigvgan weights restored from:", self.bigvgan_path)
        self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
        self.normalizer = TextNormalizer()
        self.normalizer.load()
        print(">> TextNormalizer loaded")
        self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
        print(">> bpe model loaded from:", self.bpe_path)
        # 缓存参考音频mel:
        self.cache_audio_prompt = None
        self.cache_cond_mel = None
        # 进度引用显示(可选)
        self.gr_progress = None
        self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None

    def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
        """
        Shrink special tokens (silent_token and stop_mel_token) in codes
        codes: [B, T]
        """
        code_lens = []
        codes_list = []
        device = codes.device
        dtype = codes.dtype
        isfix = False
        for i in range(0, codes.shape[0]):
            code = codes[i]
            if not torch.any(code == self.stop_mel_token).item():
                len_ = code.size(0)
            else:
                stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
                len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)

            count = torch.sum(code == silent_token).item()
            if count > max_consecutive:
                # code = code.cpu().tolist()
                ncode_idx = []
                n = 0
                for k in range(len_):
                    assert code[
                               k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
                    if code[k] != silent_token:
                        ncode_idx.append(k)
                        n = 0
                    elif code[k] == silent_token and n < 10:
                        ncode_idx.append(k)
                        n += 1
                    # if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
                    #    n += 1
                # new code
                len_ = len(ncode_idx)
                codes_list.append(code[ncode_idx])
                isfix = True
            else:
                # shrink to len_
                codes_list.append(code[:len_])
            code_lens.append(len_)
        if isfix:
            if len(codes_list) > 1:
                codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
            else:
                codes = codes_list[0].unsqueeze(0)
        else:
            # unchanged
            pass
        # clip codes to max length
        max_len = max(code_lens)
        if max_len < codes.shape[1]:
            codes = codes[:, :max_len]
        code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
        return codes, code_lens

    def bucket_sentences(self, sentences, bucket_max_size=4) -> List[List[Dict]]:
        """
        Sentence data bucketing.
        if ``bucket_max_size=1``, return all sentences in one bucket.
        """
        outputs: List[Dict] = []
        for idx, sent in enumerate(sentences):
            outputs.append({"idx": idx, "sent": sent, "len": len(sent)})

        if len(outputs) > bucket_max_size:
            # split sentences into buckets by sentence length
            buckets: List[List[Dict]] = []
            factor = 1.5
            last_bucket = None
            last_bucket_sent_len_median = 0

            for sent in sorted(outputs, key=lambda x: x["len"]):
                current_sent_len = sent["len"]
                if current_sent_len == 0:
                    print(">> skip empty sentence")
                    continue
                if last_bucket is None \
                        or current_sent_len >= int(last_bucket_sent_len_median * factor) \
                        or len(last_bucket) >= bucket_max_size:
                    # new bucket
                    buckets.append([sent])
                    last_bucket = buckets[-1]
                    last_bucket_sent_len_median = current_sent_len
                else:
                    # current bucket can hold more sentences
                    last_bucket.append(sent)  # sorted
                    mid = len(last_bucket) // 2
                    last_bucket_sent_len_median = last_bucket[mid]["len"]
            last_bucket = None
            # merge all buckets with size 1
            out_buckets: List[List[Dict]] = []
            only_ones: List[Dict] = []
            for b in buckets:
                if len(b) == 1:
                    only_ones.append(b[0])
                else:
                    out_buckets.append(b)
            if len(only_ones) > 0:
                # merge into previous buckets if possible
                # print("only_ones:", [(o["idx"], o["len"]) for o in only_ones])
                for i in range(len(out_buckets)):
                    b = out_buckets[i]
                    if len(b) < bucket_max_size:
                        b.append(only_ones.pop(0))
                        if len(only_ones) == 0:
                            break
                # combined all remaining sized 1 buckets
                if len(only_ones) > 0:
                    out_buckets.extend(
                        [only_ones[i:i + bucket_max_size] for i in range(0, len(only_ones), bucket_max_size)])
            return out_buckets
        return [outputs]

    def pad_tokens_cat(self, tokens: List[torch.Tensor]) -> torch.Tensor:
        if self.model_version and self.model_version >= 1.5:
            # 1.5版本以上,直接使用stop_text_token 右侧填充,填充到最大长度
            # [1, N] -> [N,]
            tokens = [t.squeeze(0) for t in tokens]
            return pad_sequence(tokens, batch_first=True, padding_value=self.cfg.gpt.stop_text_token,
                                padding_side="right")
        max_len = max(t.size(1) for t in tokens)
        outputs = []
        for tensor in tokens:
            pad_len = max_len - tensor.size(1)
            if pad_len > 0:
                n = min(8, pad_len)
                tensor = torch.nn.functional.pad(tensor, (0, n), value=self.cfg.gpt.stop_text_token)
                tensor = torch.nn.functional.pad(tensor, (0, pad_len - n), value=self.cfg.gpt.start_text_token)
            tensor = tensor[:, :max_len]
            outputs.append(tensor)
        tokens = torch.cat(outputs, dim=0)
        return tokens

    def torch_empty_cache(self):
        try:
            if "cuda" in str(self.device):
                torch.cuda.empty_cache()
            elif "mps" in str(self.device):
                torch.mps.empty_cache()
        except Exception as e:
            pass

    def _set_gr_progress(self, value, desc):
        if self.gr_progress is not None:
            self.gr_progress(value, desc=desc)

    # 快速推理:对于“多句长文本”,可实现至少 2~10 倍以上的速度提升~ (First modified by sunnyboxs 2025-04-16)
    def infer_fast(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_sentence=100,
                   sentences_bucket_max_size=4, **generation_kwargs):
        """
        Args:
            ``max_text_tokens_per_sentence``: 分句的最大token数,默认``100``,可以根据GPU硬件情况调整
                - 越小,batch 越多,推理速度越*快*,占用内存更多,可能影响质量
                - 越大,batch 越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
            ``sentences_bucket_max_size``: 分句分桶的最大容量,默认``4``,可以根据GPU内存调整
                - 越大,bucket数量越少,batch越多,推理速度越*快*,占用内存更多,可能影响质量
                - 越小,bucket数量越多,batch越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
        """
        print(">> start fast inference...")

        self._set_gr_progress(0, "start fast inference...")
        if verbose:
            print(f"origin text:{text}")
        start_time = time.perf_counter()

        # 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
        if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
            audio, sr = torchaudio.load(audio_prompt)
            audio = torch.mean(audio, dim=0, keepdim=True)
            if audio.shape[0] > 1:
                audio = audio[0].unsqueeze(0)
            audio = torchaudio.transforms.Resample(sr, 24000)(audio)
            cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
            cond_mel_frame = cond_mel.shape[-1]
            if verbose:
                print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)

            self.cache_audio_prompt = audio_prompt
            self.cache_cond_mel = cond_mel
        else:
            cond_mel = self.cache_cond_mel
            cond_mel_frame = cond_mel.shape[-1]
            pass

        auto_conditioning = cond_mel
        cond_mel_lengths = torch.tensor([cond_mel_frame], device=self.device)

        # text_tokens
        text_tokens_list = self.tokenizer.tokenize(text)

        sentences = self.tokenizer.split_sentences(text_tokens_list,
                                                   max_tokens_per_sentence=max_text_tokens_per_sentence)
        if verbose:
            print(">> text token count:", len(text_tokens_list))
            print("   splited sentences count:", len(sentences))
            print("   max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
            print(*sentences, sep="\n")
        do_sample = generation_kwargs.pop("do_sample", True)
        top_p = generation_kwargs.pop("top_p", 0.8)
        top_k = generation_kwargs.pop("top_k", 30)
        temperature = generation_kwargs.pop("temperature", 1.0)
        autoregressive_batch_size = 1
        length_penalty = generation_kwargs.pop("length_penalty", 0.0)
        num_beams = generation_kwargs.pop("num_beams", 3)
        repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
        max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
        sampling_rate = 24000
        # lang = "EN"
        # lang = "ZH"
        wavs = []
        gpt_gen_time = 0
        gpt_forward_time = 0
        bigvgan_time = 0

        # text processing
        all_text_tokens: List[List[torch.Tensor]] = []
        self._set_gr_progress(0.1, "text processing...")
        bucket_max_size = sentences_bucket_max_size if self.device != "cpu" else 1
        all_sentences = self.bucket_sentences(sentences, bucket_max_size=bucket_max_size)
        bucket_count = len(all_sentences)
        if verbose:
            print(">> sentences bucket_count:", bucket_count,
                  "bucket sizes:", [(len(s), [t["idx"] for t in s]) for s in all_sentences],
                  "bucket_max_size:", bucket_max_size)
        for sentences in all_sentences:
            temp_tokens: List[torch.Tensor] = []
            all_text_tokens.append(temp_tokens)
            for item in sentences:
                sent = item["sent"]
                text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
                text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
                if verbose:
                    print(text_tokens)
                    print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
                    # debug tokenizer
                    text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
                    print("text_token_syms is same as sentence tokens", text_token_syms == sent)
                temp_tokens.append(text_tokens)

        # Sequential processing of bucketing data
        all_batch_num = sum(len(s) for s in all_sentences)
        all_batch_codes = []
        processed_num = 0
        for item_tokens in all_text_tokens:
            batch_num = len(item_tokens)
            if batch_num > 1:
                batch_text_tokens = self.pad_tokens_cat(item_tokens)
            else:
                batch_text_tokens = item_tokens[0]
            processed_num += batch_num
            # gpt speech
            self._set_gr_progress(0.2 + 0.3 * processed_num / all_batch_num,
                                  f"gpt inference speech... {processed_num}/{all_batch_num}")
            m_start_time = time.perf_counter()
            with torch.no_grad():
                with torch.amp.autocast(batch_text_tokens.device.type, enabled=self.dtype is not None,
                                        dtype=self.dtype):
                    temp_codes = self.gpt.inference_speech(auto_conditioning, batch_text_tokens,
                                                           cond_mel_lengths=cond_mel_lengths,
                                                           # text_lengths=text_len,
                                                           do_sample=do_sample,
                                                           top_p=top_p,
                                                           top_k=top_k,
                                                           temperature=temperature,
                                                           num_return_sequences=autoregressive_batch_size,
                                                           length_penalty=length_penalty,
                                                           num_beams=num_beams,
                                                           repetition_penalty=repetition_penalty,
                                                           max_generate_length=max_mel_tokens,
                                                           **generation_kwargs)
                    all_batch_codes.append(temp_codes)
            gpt_gen_time += time.perf_counter() - m_start_time

        # gpt latent
        self._set_gr_progress(0.5, "gpt inference latents...")
        all_idxs = []
        all_latents = []
        has_warned = False
        for batch_codes, batch_tokens, batch_sentences in zip(all_batch_codes, all_text_tokens, all_sentences):
            for i in range(batch_codes.shape[0]):
                codes = batch_codes[i]  # [x]
                if not has_warned and codes[-1] != self.stop_mel_token:
                    warnings.warn(
                        f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
                        f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
                        category=RuntimeWarning
                    )
                    has_warned = True
                codes = codes.unsqueeze(0)  # [x] -> [1, x]
                if verbose:
                    print("codes:", codes.shape)
                    print(codes)
                codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
                if verbose:
                    print("fix codes:", codes.shape)
                    print(codes)
                    print("code_lens:", code_lens)
                text_tokens = batch_tokens[i]
                all_idxs.append(batch_sentences[i]["idx"])
                m_start_time = time.perf_counter()
                with torch.no_grad():
                    with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
                        latent = \
                            self.gpt(auto_conditioning, text_tokens,
                                     torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
                                     code_lens * self.gpt.mel_length_compression,
                                     cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
                                                                   device=text_tokens.device),
                                     return_latent=True, clip_inputs=False)
                        gpt_forward_time += time.perf_counter() - m_start_time
                        all_latents.append(latent)
        del all_batch_codes, all_text_tokens, all_sentences
        # bigvgan chunk
        chunk_size = 2
        all_latents = [all_latents[all_idxs.index(i)] for i in range(len(all_latents))]
        if verbose:
            print(">> all_latents:", len(all_latents))
            print("  latents length:", [l.shape[1] for l in all_latents])
        chunk_latents = [all_latents[i: i + chunk_size] for i in range(0, len(all_latents), chunk_size)]
        chunk_length = len(chunk_latents)
        latent_length = len(all_latents)

        # bigvgan chunk decode
        self._set_gr_progress(0.7, "bigvgan decode...")
        tqdm_progress = tqdm(total=latent_length, desc="bigvgan")
        for items in chunk_latents:
            tqdm_progress.update(len(items))
            latent = torch.cat(items, dim=1)
            with torch.no_grad():
                with torch.amp.autocast(latent.device.type, enabled=self.dtype is not None, dtype=self.dtype):
                    m_start_time = time.perf_counter()
                    wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
                    bigvgan_time += time.perf_counter() - m_start_time
                    wav = wav.squeeze(1)
                    pass
            wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
            wavs.append(wav.cpu())  # to cpu before saving

        # clear cache
        tqdm_progress.close()  # 确保进度条被关闭
        del all_latents, chunk_latents
        end_time = time.perf_counter()
        self.torch_empty_cache()

        # wav audio output
        self._set_gr_progress(0.9, "save audio...")
        wav = torch.cat(wavs, dim=1)
        wav_length = wav.shape[-1] / sampling_rate
        print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
        print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
        print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
        print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
        print(f">> Total fast inference time: {end_time - start_time:.2f} seconds")
        print(f">> Generated audio length: {wav_length:.2f} seconds")
        print(f">> [fast] bigvgan chunk_length: {chunk_length}")
        print(f">> [fast] batch_num: {all_batch_num} bucket_max_size: {bucket_max_size}",
              f"bucket_count: {bucket_count}" if bucket_max_size > 1 else "")
        print(f">> [fast] RTF: {(end_time - start_time) / wav_length:.4f}")

        # save audio
        wav = wav.cpu()  # to cpu
        if output_path:
            # 直接保存音频到指定路径中
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
            print(">> wav file saved to:", output_path)
            return output_path
        else:
            # 返回以符合Gradio的格式要求
            wav_data = wav.type(torch.int16)
            wav_data = wav_data.numpy().T
            return (sampling_rate, wav_data)

    # 原始推理模式
    def infer(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_sentence=120,
              **generation_kwargs):
        print(">> start inference...")
        self._set_gr_progress(0, "start inference...")
        if verbose:
            print(f"origin text:{text}")
        start_time = time.perf_counter()

        # 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
        if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
            audio, sr = torchaudio.load(audio_prompt)
            audio = torch.mean(audio, dim=0, keepdim=True)
            if audio.shape[0] > 1:
                audio = audio[0].unsqueeze(0)
            audio = torchaudio.transforms.Resample(sr, 24000)(audio)
            cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
            cond_mel_frame = cond_mel.shape[-1]
            if verbose:
                print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)

            self.cache_audio_prompt = audio_prompt
            self.cache_cond_mel = cond_mel
        else:
            cond_mel = self.cache_cond_mel
            cond_mel_frame = cond_mel.shape[-1]
            pass

        self._set_gr_progress(0.1, "text processing...")
        auto_conditioning = cond_mel
        text_tokens_list = self.tokenizer.tokenize(text)
        sentences = self.tokenizer.split_sentences(text_tokens_list, max_text_tokens_per_sentence)
        if verbose:
            print("text token count:", len(text_tokens_list))
            print("sentences count:", len(sentences))
            print("max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
            print(*sentences, sep="\n")
        do_sample = generation_kwargs.pop("do_sample", True)
        top_p = generation_kwargs.pop("top_p", 0.8)
        top_k = generation_kwargs.pop("top_k", 30)
        temperature = generation_kwargs.pop("temperature", 1.0)
        autoregressive_batch_size = 1
        length_penalty = generation_kwargs.pop("length_penalty", 0.0)
        num_beams = generation_kwargs.pop("num_beams", 3)
        repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
        max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
        sampling_rate = 24000
        # lang = "EN"
        # lang = "ZH"
        wavs = []
        gpt_gen_time = 0
        gpt_forward_time = 0
        bigvgan_time = 0
        progress = 0
        has_warned = False
        for sent in sentences:
            text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
            text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
            # text_tokens = F.pad(text_tokens, (0, 1))  # This may not be necessary.
            # text_tokens = F.pad(text_tokens, (1, 0), value=0)
            # text_tokens = F.pad(text_tokens, (0, 1), value=1)
            if verbose:
                print(text_tokens)
                print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
                # debug tokenizer
                text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
                print("text_token_syms is same as sentence tokens", text_token_syms == sent)

            # text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
            # print(text_len)
            progress += 1
            self._set_gr_progress(0.2 + 0.4 * (progress - 1) / len(sentences),
                                  f"gpt inference latent... {progress}/{len(sentences)}")
            m_start_time = time.perf_counter()
            with torch.no_grad():
                with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
                    codes = self.gpt.inference_speech(auto_conditioning, text_tokens,
                                                      cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
                                                                                    device=text_tokens.device),
                                                      # text_lengths=text_len,
                                                      do_sample=do_sample,
                                                      top_p=top_p,
                                                      top_k=top_k,
                                                      temperature=temperature,
                                                      num_return_sequences=autoregressive_batch_size,
                                                      length_penalty=length_penalty,
                                                      num_beams=num_beams,
                                                      repetition_penalty=repetition_penalty,
                                                      max_generate_length=max_mel_tokens,
                                                      **generation_kwargs)
                gpt_gen_time += time.perf_counter() - m_start_time
                if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
                    warnings.warn(
                        f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
                        f"Input text tokens: {text_tokens.shape[1]}. "
                        f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
                        category=RuntimeWarning
                    )
                    has_warned = True

                code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
                if verbose:
                    print(codes, type(codes))
                    print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
                    print(f"code len: {code_lens}")

                # remove ultra-long silence if exits
                # temporarily fix the long silence bug.
                codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
                if verbose:
                    print(codes, type(codes))
                    print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
                    print(f"code len: {code_lens}")
                self._set_gr_progress(0.2 + 0.4 * progress / len(sentences),
                                      f"gpt inference speech... {progress}/{len(sentences)}")
                m_start_time = time.perf_counter()
                # latent, text_lens_out, code_lens_out = \
                with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
                    latent = \
                        self.gpt(auto_conditioning, text_tokens,
                                 torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
                                 code_lens * self.gpt.mel_length_compression,
                                 cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
                                                               device=text_tokens.device),
                                 return_latent=True, clip_inputs=False)
                    gpt_forward_time += time.perf_counter() - m_start_time

                    m_start_time = time.perf_counter()
                    wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
                    bigvgan_time += time.perf_counter() - m_start_time
                    wav = wav.squeeze(1)

                wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
                if verbose:
                    print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
                # wavs.append(wav[:, :-512])
                wavs.append(wav.cpu())  # to cpu before saving
        end_time = time.perf_counter()
        self._set_gr_progress(0.9, "save audio...")
        wav = torch.cat(wavs, dim=1)
        wav_length = wav.shape[-1] / sampling_rate
        print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
        print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
        print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
        print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
        print(f">> Total inference time: {end_time - start_time:.2f} seconds")
        print(f">> Generated audio length: {wav_length:.2f} seconds")
        print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")

        # save audio
        wav = wav.cpu()  # to cpu
        if output_path:
            # 直接保存音频到指定路径中
            if os.path.isfile(output_path):
                os.remove(output_path)
                print(">> remove old wav file:", output_path)
            if os.path.dirname(output_path) != "":
                os.makedirs(os.path.dirname(output_path), exist_ok=True)
            torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
            print(">> wav file saved to:", output_path)
            return output_path
        else:
            # 返回以符合Gradio的格式要求
            wav_data = wav.type(torch.int16)
            wav_data = wav_data.numpy().T
            return (sampling_rate, wav_data)

if __name__ == "__main__":
    prompt_wav = "examples/voice_01.wav"
    text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'

    tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
    tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)