Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,559 Bytes
fba9477 04be12f fba9477 04be12f fba9477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
import os
from subprocess import CalledProcessError
import time
import librosa
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from omegaconf import OmegaConf
from indextts.gpt.model_v2 import UnifiedVoice
from indextts.utils.maskgct_utils import build_semantic_model, build_semantic_codec
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.front import TextNormalizer, TextTokenizer
from indextts.s2mel.modules.commons import load_checkpoint2, MyModel
from indextts.s2mel.modules.bigvgan import bigvgan
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
from indextts.s2mel.modules.audio import mel_spectrogram
from transformers import AutoTokenizer
from modelscope import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import safetensors
from transformers import SeamlessM4TFeatureExtractor
import random
import torch.nn.functional as F
class IndexTTS2:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=False, device=None,
use_cuda_kernel=None,use_deepspeed=False
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
is_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
"""
if device is not None:
self.device = device
self.is_fp16 = False if device == "cpu" else is_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.is_fp16 = is_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.is_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.is_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.is_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
self.qwen_emo = QwenEmotion(os.path.join(self.model_dir, self.cfg.qwen_emo_path))
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.is_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if self.is_fp16:
try:
import deepspeed
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> DeepSpeed加载失败,回退到标准推理: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
else:
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=False)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.extract_features = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
self.semantic_model, self.semantic_mean, self.semantic_std = build_semantic_model(
os.path.join(self.model_dir, self.cfg.w2v_stat))
self.semantic_model = self.semantic_model.to(self.device)
self.semantic_model.eval()
self.semantic_mean = self.semantic_mean.to(self.device)
self.semantic_std = self.semantic_std.to(self.device)
semantic_codec = build_semantic_codec(self.cfg.semantic_codec)
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors")
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
self.semantic_codec = semantic_codec.to(self.device)
self.semantic_codec.eval()
print('>> semantic_codec weights restored from: {}'.format(semantic_code_ckpt))
s2mel_path = os.path.join(self.model_dir, self.cfg.s2mel_checkpoint)
s2mel = MyModel(self.cfg.s2mel, use_gpt_latent=True)
s2mel, _, _, _ = load_checkpoint2(
s2mel,
None,
s2mel_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
self.s2mel = s2mel.to(self.device)
self.s2mel.models['cfm'].estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
self.s2mel.eval()
print(">> s2mel weights restored from:", s2mel_path)
# load campplus_model
campplus_ckpt_path = hf_hub_download(
"funasr/campplus", filename="campplus_cn_common.bin"
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
self.campplus_model = campplus_model.to(self.device)
self.campplus_model.eval()
print(">> campplus_model weights restored from:", campplus_ckpt_path)
bigvgan_name = self.cfg.vocoder.name
self.bigvgan = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
self.bigvgan = self.bigvgan.to(self.device)
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", bigvgan_name)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
emo_matrix = torch.load(os.path.join(self.model_dir, self.cfg.emo_matrix))
self.emo_matrix = emo_matrix.to(self.device)
self.emo_num = list(self.cfg.emo_num)
spk_matrix = torch.load(os.path.join(self.model_dir, self.cfg.spk_matrix))
self.spk_matrix = spk_matrix.to(self.device)
self.emo_matrix = torch.split(self.emo_matrix, self.emo_num)
self.spk_matrix = torch.split(self.spk_matrix, self.emo_num)
mel_fn_args = {
"n_fft": self.cfg.s2mel['preprocess_params']['spect_params']['n_fft'],
"win_size": self.cfg.s2mel['preprocess_params']['spect_params']['win_length'],
"hop_size": self.cfg.s2mel['preprocess_params']['spect_params']['hop_length'],
"num_mels": self.cfg.s2mel['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": self.cfg.s2mel["preprocess_params"]["sr"],
"fmin": self.cfg.s2mel['preprocess_params']['spect_params'].get('fmin', 0),
"fmax": None if self.cfg.s2mel['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
self.mel_fn = lambda x: mel_spectrogram(x, **mel_fn_args)
# 缓存参考音频:
self.cache_spk_cond = None
self.cache_s2mel_style = None
self.cache_s2mel_prompt = None
self.cache_spk_audio_prompt = None
self.cache_emo_cond = None
self.cache_emo_audio_prompt = None
self.cache_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
@torch.no_grad()
def get_emb(self, input_features, attention_mask):
vq_emb = self.semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - self.semantic_mean) / self.semantic_std
return feat
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def insert_interval_silence(self, wavs, sampling_rate=22050, interval_silence=200):
"""
Insert silences between sentences.
wavs: List[torch.tensor]
"""
if not wavs or interval_silence <= 0:
return wavs
# get channel_size
channel_size = wavs[0].size(0)
# get silence tensor
sil_dur = int(sampling_rate * interval_silence / 1000.0)
sil_tensor = torch.zeros(channel_size, sil_dur)
wavs_list = []
for i, wav in enumerate(wavs):
wavs_list.append(wav)
if i < len(wavs) - 1:
wavs_list.append(sil_tensor)
return wavs_list
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 原始推理模式
def infer(self, spk_audio_prompt, text, output_path,
emo_audio_prompt=None, emo_alpha=1.0,
emo_vector=None,
use_emo_text=False, emo_text=None, use_random=False, interval_silence=200,
verbose=False, max_text_tokens_per_sentence=120, **generation_kwargs):
print(">> start inference...")
self._set_gr_progress(0, "start inference...")
if verbose:
print(f"origin text:{text}, spk_audio_prompt:{spk_audio_prompt},"
f" emo_audio_prompt:{emo_audio_prompt}, emo_alpha:{emo_alpha}, "
f"emo_vector:{emo_vector}, use_emo_text:{use_emo_text}, "
f"emo_text:{emo_text}")
start_time = time.perf_counter()
if use_emo_text:
emo_audio_prompt = None
emo_alpha = 1.0
# assert emo_audio_prompt is None
# assert emo_alpha == 1.0
if emo_text is None:
emo_text = text
emo_dict, content = self.qwen_emo.inference(emo_text)
print(emo_dict)
emo_vector = list(emo_dict.values())
if emo_vector is not None:
emo_audio_prompt = None
emo_alpha = 1.0
# assert emo_audio_prompt is None
# assert emo_alpha == 1.0
if emo_audio_prompt is None:
emo_audio_prompt = spk_audio_prompt
emo_alpha = 1.0
# assert emo_alpha == 1.0
# 如果参考音频改变了,才需要重新生成, 提升速度
if self.cache_spk_cond is None or self.cache_spk_audio_prompt != spk_audio_prompt:
audio, sr = librosa.load(spk_audio_prompt)
audio = torch.tensor(audio).unsqueeze(0)
audio_22k = torchaudio.transforms.Resample(sr, 22050)(audio)
audio_16k = torchaudio.transforms.Resample(sr, 16000)(audio)
inputs = self.extract_features(audio_16k, sampling_rate=16000, return_tensors="pt")
input_features = inputs["input_features"]
attention_mask = inputs["attention_mask"]
input_features = input_features.to(self.device)
attention_mask = attention_mask.to(self.device)
spk_cond_emb = self.get_emb(input_features, attention_mask)
_, S_ref = self.semantic_codec.quantize(spk_cond_emb)
ref_mel = self.mel_fn(audio_22k.to(spk_cond_emb.device).float())
ref_target_lengths = torch.LongTensor([ref_mel.size(2)]).to(ref_mel.device)
feat = torchaudio.compliance.kaldi.fbank(audio_16k.to(ref_mel.device),
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True) # feat2另外一个滤波器能量组特征[922, 80]
style = self.campplus_model(feat.unsqueeze(0)) # 参考音频的全局style2[1,192]
prompt_condition = self.s2mel.models['length_regulator'](S_ref,
ylens=ref_target_lengths,
n_quantizers=3,
f0=None)[0]
self.cache_spk_cond = spk_cond_emb
self.cache_s2mel_style = style
self.cache_s2mel_prompt = prompt_condition
self.cache_spk_audio_prompt = spk_audio_prompt
self.cache_mel = ref_mel
else:
style = self.cache_s2mel_style
prompt_condition = self.cache_s2mel_prompt
spk_cond_emb = self.cache_spk_cond
ref_mel = self.cache_mel
if emo_vector is not None:
weight_vector = torch.tensor(emo_vector).to(self.device)
if use_random:
random_index = [random.randint(0, x - 1) for x in self.emo_num]
else:
random_index = [find_most_similar_cosine(style, tmp) for tmp in self.spk_matrix]
emo_matrix = [tmp[index].unsqueeze(0) for index, tmp in zip(random_index, self.emo_matrix)]
emo_matrix = torch.cat(emo_matrix, 0)
emovec_mat = weight_vector.unsqueeze(1) * emo_matrix
emovec_mat = torch.sum(emovec_mat, 0)
emovec_mat = emovec_mat.unsqueeze(0)
if self.cache_emo_cond is None or self.cache_emo_audio_prompt != emo_audio_prompt:
emo_audio, _ = librosa.load(emo_audio_prompt, sr=16000)
emo_inputs = self.extract_features(emo_audio, sampling_rate=16000, return_tensors="pt")
emo_input_features = emo_inputs["input_features"]
emo_attention_mask = emo_inputs["attention_mask"]
emo_input_features = emo_input_features.to(self.device)
emo_attention_mask = emo_attention_mask.to(self.device)
emo_cond_emb = self.get_emb(emo_input_features, emo_attention_mask)
self.cache_emo_cond = emo_cond_emb
self.cache_emo_audio_prompt = emo_audio_prompt
else:
emo_cond_emb = self.cache_emo_cond
self._set_gr_progress(0.1, "text processing...")
text_tokens_list = self.tokenizer.tokenize(text)
sentences = self.tokenizer.split_sentences(text_tokens_list, max_text_tokens_per_sentence)
if verbose:
print("text_tokens_list:", text_tokens_list)
print("sentences count:", len(sentences))
print("max_text_tokens_per_sentence:", max_text_tokens_per_sentence)
print(*sentences, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 0.8)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 1500)
sampling_rate = 22050
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
s2mel_time = 0
bigvgan_time = 0
progress = 0
has_warned = False
for sent in sentences:
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as sentence tokens", text_token_syms == sent)
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
emovec = self.gpt.merge_emovec(
spk_cond_emb,
emo_cond_emb,
torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
alpha=emo_alpha
)
if emo_vector is not None:
emovec = emovec_mat + (1 - torch.sum(weight_vector)) * emovec
# emovec = emovec_mat
codes, speech_conditioning_latent = self.gpt.inference_speech(
spk_cond_emb,
text_tokens,
emo_cond_emb,
cond_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs
)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_sentence`({max_text_tokens_per_sentence}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
# if verbose:
# print(codes, type(codes))
# print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
# print(f"code len: {code_lens}")
code_lens = []
for code in codes:
if self.stop_mel_token not in code:
code_lens.append(len(code))
code_len = len(code)
else:
len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
code_len = len_ - 1
code_lens.append(code_len)
codes = codes[:, :code_len]
code_lens = torch.LongTensor(code_lens)
code_lens = code_lens.to(self.device)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
m_start_time = time.perf_counter()
use_speed = torch.zeros(spk_cond_emb.size(0)).to(spk_cond_emb.device).long()
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = self.gpt(
speech_conditioning_latent,
text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
codes,
torch.tensor([codes.shape[-1]], device=text_tokens.device),
emo_cond_emb,
cond_mel_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_mel_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
use_speed=use_speed,
)
gpt_forward_time += time.perf_counter() - m_start_time
dtype = None
with torch.amp.autocast(text_tokens.device.type, enabled=dtype is not None, dtype=dtype):
m_start_time = time.perf_counter()
diffusion_steps = 25
inference_cfg_rate = 0.7
latent = self.s2mel.models['gpt_layer'](latent)
S_infer = self.semantic_codec.quantizer.vq2emb(codes.unsqueeze(1))
S_infer = S_infer.transpose(1, 2)
S_infer = S_infer + latent
target_lengths = (code_lens * 1.72).long()
cond = self.s2mel.models['length_regulator'](S_infer,
ylens=target_lengths,
n_quantizers=3,
f0=None)[0]
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = self.s2mel.models['cfm'].inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(
cond.device),
ref_mel, style, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, ref_mel.size(-1):]
s2mel_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav = self.bigvgan(vc_target.float()).squeeze().unsqueeze(0)
print(wav.shape)
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "save audio...")
wavs = self.insert_interval_silence(wavs, sampling_rate=sampling_rate, interval_silence=interval_silence)
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> s2mel_time: {s2mel_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
def find_most_similar_cosine(query_vector, matrix):
query_vector = query_vector.float()
matrix = matrix.float()
similarities = F.cosine_similarity(query_vector, matrix, dim=1)
most_similar_index = torch.argmax(similarities)
return most_similar_index
class QwenEmotion:
def __init__(self, model_dir):
self.model_dir = model_dir
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_dir,
torch_dtype="float16", # "auto"
device_map="auto"
)
self.prompt = "文本情感分类"
self.convert_dict = {
"愤怒": "angry",
"高兴": "happy",
"恐惧": "fear",
"反感": "hate",
"悲伤": "sad",
"低落": "low",
"惊讶": "surprise",
"自然": "neutral",
}
self.backup_dict = {"happy": 0, "angry": 0, "sad": 0, "fear": 0, "hate": 0, "low": 0, "surprise": 0,
"neutral": 1.0}
self.max_score = 1.2
self.min_score = 0.0
def convert(self, content):
content = content.replace("\n", " ")
content = content.replace(" ", "")
content = content.replace("{", "")
content = content.replace("}", "")
content = content.replace('"', "")
parts = content.strip().split(',')
print(parts)
parts_dict = {}
desired_order = ["高兴", "愤怒", "悲伤", "恐惧", "反感", "低落", "惊讶", "自然"]
for part in parts:
key_value = part.strip().split(':')
if len(key_value) == 2:
parts_dict[key_value[0].strip()] = part
# 按照期望顺序重新排列
ordered_parts = [parts_dict[key] for key in desired_order if key in parts_dict]
parts = ordered_parts
if len(parts) != len(self.convert_dict):
return self.backup_dict
emotion_dict = {}
for part in parts:
key_value = part.strip().split(':')
if len(key_value) == 2:
try:
key = self.convert_dict[key_value[0].strip()]
value = float(key_value[1].strip())
value = max(self.min_score, min(self.max_score, value))
emotion_dict[key] = value
except Exception:
continue
for key in self.backup_dict:
if key not in emotion_dict:
emotion_dict[key] = 0.0
if sum(emotion_dict.values()) <= 0:
return self.backup_dict
return emotion_dict
def inference(self, text_input):
start = time.time()
messages = [
{"role": "system", "content": f"{self.prompt}"},
{"role": "user", "content": f"{text_input}"}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
# conduct text completion
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=32768,
pad_token_id=self.tokenizer.eos_token_id
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
emotion_dict = self.convert(content)
return emotion_dict, content
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'
tts = IndexTTS2(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(spk_audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)
|