File size: 23,785 Bytes
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# -*- coding: utf-8 -*-
import os
import traceback
import re
from typing import List, Union, overload
import warnings
from indextts.utils.common import tokenize_by_CJK_char, de_tokenized_by_CJK_char
from sentencepiece import SentencePieceProcessor


class TextNormalizer:
    def __init__(self):
        self.zh_normalizer = None
        self.en_normalizer = None
        self.char_rep_map = {
            ":": ",",
            ";": ",",
            ";": ",",
            ",": ",",
            "。": ".",
            "!": "!",
            "?": "?",
            "\n": " ",
            "·": "-",
            "、": ",",
            "...": "…",
            ",,,": "…",
            ",,,": "…",
            "……": "…",
            "“": "'",
            "”": "'",
            '"': "'",
            "‘": "'",
            "’": "'",
            "(": "'",
            ")": "'",
            "(": "'",
            ")": "'",
            "《": "'",
            "》": "'",
            "【": "'",
            "】": "'",
            "[": "'",
            "]": "'",
            "—": "-",
            "~": "-",
            "~": "-",
            "「": "'",
            "」": "'",
            ":": ",",
        }
        self.zh_char_rep_map = {
            "$": ".",
            **self.char_rep_map,
        }

    def match_email(self, email):
        # 正则表达式匹配邮箱格式:数字英文@数字英文.英文
        pattern = r"^[a-zA-Z0-9]+@[a-zA-Z0-9]+\.[a-zA-Z]+$"
        return re.match(pattern, email) is not None

    PINYIN_TONE_PATTERN = r"(?<![a-z])((?:[bpmfdtnlgkhjqxzcsryw]|[zcs]h)?(?:[aeiouüv]|[ae]i|u[aio]|ao|ou|i[aue]|[uüv]e|[uvü]ang?|uai|[aeiuv]n|[aeio]ng|ia[no]|i[ao]ng)|ng|er)([1-5])"
    """
    匹配拼音声调格式:pinyin+数字,声调1-5,5表示轻声
    例如:xuan4, jve2, ying1, zhong4, shang5
    不匹配:beta1, voice2
    """
    NAME_PATTERN = r"[\u4e00-\u9fff]+(?:[-·—][\u4e00-\u9fff]+){1,2}"
    """
    匹配人名,格式:中文·中文,中文·中文-中文
    例如:克里斯托弗·诺兰,约瑟夫·高登-莱维特
    """

    # 匹配常见英语缩写 's,仅用于替换为 is,不匹配所有 's
    ENGLISH_CONTRACTION_PATTERN = r"(what|where|who|which|how|t?here|it|s?he|that|this)'s"


    def use_chinese(self, s):
        has_chinese = bool(re.search(r"[\u4e00-\u9fff]", s))
        has_alpha = bool(re.search(r"[a-zA-Z]", s))
        is_email = self.match_email(s)
        if has_chinese or not has_alpha or is_email:
            return True

        has_pinyin = bool(re.search(TextNormalizer.PINYIN_TONE_PATTERN, s, re.IGNORECASE))
        return has_pinyin

    def load(self):
        # print(os.path.join(os.path.dirname(os.path.abspath(__file__)), ".."))
        # sys.path.append(model_dir)
        import platform
        if self.zh_normalizer is not None and self.en_normalizer is not None:
            return
        if platform.system() == "Darwin":
            from wetext import Normalizer

            self.zh_normalizer = Normalizer(remove_erhua=False, lang="zh", operator="tn")
            self.en_normalizer = Normalizer(lang="en", operator="tn")
        else:
            from tn.chinese.normalizer import Normalizer as NormalizerZh
            from tn.english.normalizer import Normalizer as NormalizerEn
            # use new cache dir for build tagger rules with disable remove_interjections and remove_erhua
            cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tagger_cache")
            if not os.path.exists(cache_dir):
                os.makedirs(cache_dir)
                with open(os.path.join(cache_dir, ".gitignore"), "w") as f:
                    f.write("*\n")
            self.zh_normalizer = NormalizerZh(
                cache_dir=cache_dir, remove_interjections=False, remove_erhua=False, overwrite_cache=False
            )
            self.en_normalizer = NormalizerEn(overwrite_cache=False)

    def normalize(self, text: str) -> str:
        if not self.zh_normalizer or not self.en_normalizer:
            print("Error, text normalizer is not initialized !!!")
            return ""
        if self.use_chinese(text):
            text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
            replaced_text, pinyin_list = self.save_pinyin_tones(text.rstrip())
            
            replaced_text, original_name_list = self.save_names(replaced_text)
            try:
                result = self.zh_normalizer.normalize(replaced_text)
            except Exception:
                result = ""
                print(traceback.format_exc())
            # 恢复人名
            result = self.restore_names(result, original_name_list)
            # 恢复拼音声调
            result = self.restore_pinyin_tones(result, pinyin_list)
            pattern = re.compile("|".join(re.escape(p) for p in self.zh_char_rep_map.keys()))
            result = pattern.sub(lambda x: self.zh_char_rep_map[x.group()], result)
        else:
            try:
                text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
                result = self.en_normalizer.normalize(text)
            except Exception:
                result = text
                print(traceback.format_exc())
            pattern = re.compile("|".join(re.escape(p) for p in self.char_rep_map.keys()))
            result = pattern.sub(lambda x: self.char_rep_map[x.group()], result)
        return result

    def correct_pinyin(self, pinyin: str):
        """
        将 jqx 的韵母为 u/ü 的拼音转换为 v
        如:ju -> jv , que -> qve, xün -> xvn
        """
        if pinyin[0] not in "jqxJQX":
            return pinyin
        # 匹配 jqx 的韵母为 u/ü 的拼音
        pattern = r"([jqx])[uü](n|e|an)*(\d)"
        repl = r"\g<1>v\g<2>\g<3>"
        pinyin = re.sub(pattern, repl, pinyin, flags=re.IGNORECASE)
        return pinyin.upper()

    def save_names(self, original_text):
        """
        替换人名为占位符 <n_a>、 <n_b>, ...
        例如:克里斯托弗·诺兰 -> <n_a>
        """
        # 人名
        name_pattern = re.compile(TextNormalizer.NAME_PATTERN, re.IGNORECASE)
        original_name_list = re.findall(name_pattern, original_text)
        if len(original_name_list) == 0:
            return (original_text, None)
        original_name_list = list(set("".join(n) for n in original_name_list))
        transformed_text = original_text
        # 替换占位符 <n_a>、 <n_b>, ...
        for i, name in enumerate(original_name_list):
            number = chr(ord("a") + i)
            transformed_text = transformed_text.replace(name, f"<n_{number}>")

        return transformed_text, original_name_list

    def restore_names(self, normalized_text, original_name_list):
        """
        恢复人名为原来的文字
        例如:<n_a> -> original_name_list[0]
        """
        if not original_name_list or len(original_name_list) == 0:
            return normalized_text

        transformed_text = normalized_text
        # 替换为占位符 <n_a>、 <n_b>, ...
        for i, name in enumerate(original_name_list):
            number = chr(ord("a") + i)
            transformed_text = transformed_text.replace(f"<n_{number}>", name)
        return transformed_text

    def save_pinyin_tones(self, original_text):
        """
        替换拼音声调为占位符 <pinyin_a>, <pinyin_b>, ...
        例如:xuan4 -> <pinyin_a>
        """
        # 声母韵母+声调数字
        origin_pinyin_pattern = re.compile(TextNormalizer.PINYIN_TONE_PATTERN, re.IGNORECASE)
        original_pinyin_list = re.findall(origin_pinyin_pattern, original_text)
        if len(original_pinyin_list) == 0:
            return (original_text, None)
        original_pinyin_list = list(set("".join(p) for p in original_pinyin_list))
        transformed_text = original_text
        # 替换为占位符 <pinyin_a>, <pinyin_b>, ...
        for i, pinyin in enumerate(original_pinyin_list):
            number = chr(ord("a") + i)
            transformed_text = transformed_text.replace(pinyin, f"<pinyin_{number}>")

        # print("original_text: ", original_text)
        # print("transformed_text: ", transformed_text)
        return transformed_text, original_pinyin_list

    def restore_pinyin_tones(self, normalized_text, original_pinyin_list):
        """
        恢复拼音中的音调数字(1-5)为原来的拼音
        例如:<pinyin_a> -> original_pinyin_list[0]
        """
        if not original_pinyin_list or len(original_pinyin_list) == 0:
            return normalized_text

        transformed_text = normalized_text
        # 替换占位符 <pinyin_a>, <pinyin_b>, ...
        for i, pinyin in enumerate(original_pinyin_list):
            number = chr(ord("a") + i)
            pinyin = self.correct_pinyin(pinyin)
            transformed_text = transformed_text.replace(f"<pinyin_{number}>", pinyin)
        # print("normalized_text: ", normalized_text)
        # print("transformed_text: ", transformed_text)
        return transformed_text


class TextTokenizer:
    def __init__(self, vocab_file: str, normalizer: TextNormalizer = None):
        self.vocab_file = vocab_file
        self.normalizer = normalizer

        if self.vocab_file is None:
            raise ValueError("vocab_file is None")
        if not os.path.exists(self.vocab_file):
            raise ValueError(f"vocab_file {self.vocab_file} does not exist")
        if self.normalizer:
            self.normalizer.load()
        # 加载词表
        self.sp_model = SentencePieceProcessor(model_file=self.vocab_file)

        self.pre_tokenizers = [
            # 预处理器
            tokenize_by_CJK_char,
        ]

    @property
    def vocab_size(self):
        return self.sp_model.GetPieceSize()

    @property
    def unk_token(self):
        return "<unk>"

    @property
    def pad_token(self):
        return None

    @property
    def bos_token(self):
        return "<s>"

    @property
    def eos_token(self):
        return "</s>"

    @property
    def pad_token_id(self):
        return -1

    @property
    def bos_token_id(self):
        return 0

    @property
    def eos_token_id(self):
        return 1

    @property
    def unk_token_id(self):
        return self.sp_model.unk_id()

    @property
    def special_tokens_map(self):
        return {
            "unk_token": self.unk_token,
            "pad_token": self.pad_token,
            "bos_token": self.bos_token,
            "eos_token": self.eos_token,
        }

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        return vocab

    @overload
    def convert_ids_to_tokens(self, ids: int) -> str: ...

    @overload
    def convert_ids_to_tokens(self, ids: List[int]) -> List[str]: ...

    def convert_ids_to_tokens(self, ids: Union[List[int], int]):
        return self.sp_model.IdToPiece(ids)

    def convert_tokens_to_ids(self, tokens: Union[List[str], str]) -> List[int]:
        if isinstance(tokens, str):
            tokens = [tokens]
        return [self.sp_model.PieceToId(token) for token in tokens]

    def tokenize(self, text: str) -> List[str]:
        return self.encode(text, out_type=str)

    def encode(self, text: str, **kwargs):
        if len(text) == 0:
            return []
        if len(text.strip()) == 1:
            return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)
        # 预处理
        if self.normalizer:
            text = self.normalizer.normalize(text)
        if len(self.pre_tokenizers) > 0:
            for pre_tokenizer in self.pre_tokenizers:
                text = pre_tokenizer(text)
        return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)

    def batch_encode(self, texts: List[str], **kwargs):
        # 预处理
        if self.normalizer:
            texts = [self.normalizer.normalize(text) for text in texts]
        if len(self.pre_tokenizers) > 0:
            for pre_tokenizer in self.pre_tokenizers:
                texts = [pre_tokenizer(text) for text in texts]
        return self.sp_model.Encode(texts, out_type=kwargs.pop("out_type", int), **kwargs)

    def decode(self, ids: Union[List[int], int], do_lower_case=False, **kwargs):
        if isinstance(ids, int):
            ids = [ids]
        decoded = self.sp_model.Decode(ids, out_type=kwargs.pop("out_type", str), **kwargs)
        return de_tokenized_by_CJK_char(decoded, do_lower_case=do_lower_case)

    @staticmethod
    def split_sentences_by_token(
        tokenized_str: List[str], split_tokens: List[str], max_tokens_per_sentence: int
    ) -> List[List[str]]:
        """
        将tokenize后的结果按特定token进一步分割
        """
        # 处理特殊情况
        if len(tokenized_str) == 0:
            return []
        sentences: List[List[str]] = []
        current_sentence = []
        current_sentence_tokens_len = 0
        for i in range(len(tokenized_str)):
            token = tokenized_str[i]
            current_sentence.append(token)
            current_sentence_tokens_len += 1
            if current_sentence_tokens_len <= max_tokens_per_sentence:
                if token in split_tokens and current_sentence_tokens_len > 2:
                    if i < len(tokenized_str) - 1:
                        if tokenized_str[i + 1] in ["'", "▁'"]:
                            # 后续token是',则不切分
                            current_sentence.append(tokenized_str[i + 1])
                            i += 1
                    sentences.append(current_sentence)
                    current_sentence = []
                    current_sentence_tokens_len = 0
                continue
            # 如果当前tokens的长度超过最大限制
            if not  ("," in split_tokens or "▁," in split_tokens ) and ("," in current_sentence or "▁," in current_sentence): 
                # 如果当前tokens中有,,则按,分割
                sub_sentences = TextTokenizer.split_sentences_by_token(
                    current_sentence, [",", "▁,"], max_tokens_per_sentence=max_tokens_per_sentence
                )
            elif "-" not in split_tokens and "-" in current_sentence:
                # 没有,,则按-分割
                sub_sentences = TextTokenizer.split_sentences_by_token(
                    current_sentence, ["-"], max_tokens_per_sentence=max_tokens_per_sentence
                )
            else:
                # 按照长度分割
                sub_sentences = []
                for j in range(0, len(current_sentence), max_tokens_per_sentence):
                    if j + max_tokens_per_sentence < len(current_sentence):
                        sub_sentences.append(current_sentence[j : j + max_tokens_per_sentence])
                    else:
                        sub_sentences.append(current_sentence[j:])
                warnings.warn(
                    f"The tokens length of sentence exceeds limit: {max_tokens_per_sentence}, "
                    f"Tokens in sentence: {current_sentence}."
                    "Maybe unexpected behavior",
                    RuntimeWarning,
                )
            sentences.extend(sub_sentences)
            current_sentence = []
            current_sentence_tokens_len = 0
        if current_sentence_tokens_len > 0:
            assert current_sentence_tokens_len <= max_tokens_per_sentence
            sentences.append(current_sentence)
        # 如果相邻的句子加起来长度小于最大限制,则合并
        merged_sentences = []
        for sentence in sentences:
            if len(sentence) == 0:
                continue
            if len(merged_sentences) == 0:
                merged_sentences.append(sentence)
            elif len(merged_sentences[-1]) + len(sentence) <= max_tokens_per_sentence:
                merged_sentences[-1] = merged_sentences[-1] + sentence
            else:
                merged_sentences.append(sentence)
        return merged_sentences

    punctuation_marks_tokens = [
        ".",
        "!",
        "?",
        "▁.",
        # "▁!", # unk
        "▁?",
        "▁...", # ellipsis
    ]
    def split_sentences(self, tokenized: List[str], max_tokens_per_sentence=120) -> List[List[str]]:
        return TextTokenizer.split_sentences_by_token(
            tokenized, self.punctuation_marks_tokens, max_tokens_per_sentence=max_tokens_per_sentence
        )


if __name__ == "__main__":
    # 测试程序

    text_normalizer = TextNormalizer()

    cases = [
        "IndexTTS 正式发布1.0版本了,效果666",
        "晕XUAN4是一种GAN3觉",
        "我爱你!",
        "I love you!",
        "“我爱你”的英语是“I love you”",
        "2.5平方电线",
        "共465篇,约315万字",
        "2002年的第一场雪,下在了2003年",
        "速度是10km/h",
        "现在是北京时间2025年01月11日 20:00",
        "他这条裤子是2012年买的,花了200块钱",
        "电话:135-4567-8900",
        "1键3连",
        "他这条视频点赞3000+,评论1000+,收藏500+",
        "这是1024元的手机,你要吗?",
        "受不liao3你了",
        "“衣裳”不读衣chang2,而是读衣shang5",
        "最zhong4要的是:不要chong2蹈覆辙",
        "不zuo1死就不会死",
        "See you at 8:00 AM",
        "8:00 AM 开会",
        "Couting down 3, 2, 1, go!",
        "数到3就开始:1、2、3",
        "This sales for 2.5% off, only $12.5.",
        "5G网络是4G网络的升级版,2G网络是3G网络的前身",
        "苹果于2030/1/2发布新 iPhone 2X 系列手机,最低售价仅 ¥12999",
        "这酒...里...有毒...",
        # 异常case
        "只有,,,才是最好的",
        "babala2是什么?",  # babala二是什么?
        "用beta1测试",  # 用beta一测试
        "have you ever been to beta2?",  # have you ever been to beta two?
        "such as XTTS, CosyVoice2, Fish-Speech, and F5-TTS",  # such as xtts,cosyvoice two,fish-speech,and f five-tts
        "where's the money?",  # where is the money?
        "who's there?",  # who is there?
        "which's the best?",  # which is the best?
        "how's it going?",  # how is it going?
        "今天是个好日子 it's a good day",  # 今天是个好日子 it is a good day
        # 人名
        "约瑟夫·高登-莱维特(Joseph Gordon-Levitt is an American actor)",
        "蒂莫西·唐纳德·库克(英文名:Timothy Donald Cook),通称蒂姆·库克(Tim Cook),美国商业经理、工业工程师和工业开发商,现任苹果公司首席执行官。",
        # 长句子
        "《盗梦空间》是由美国华纳兄弟影片公司出品的电影,由克里斯托弗·诺兰执导并编剧,莱昂纳多·迪卡普里奥、玛丽昂·歌迪亚、约瑟夫·高登-莱维特、艾利奥特·佩吉、汤姆·哈迪等联袂主演,2010年7月16日在美国上映,2010年9月1日在中国内地上映,2020年8月28日在中国内地重映。影片剧情游走于梦境与现实之间,被定义为“发生在意识结构内的当代动作科幻片”,讲述了由莱昂纳多·迪卡普里奥扮演的造梦师,带领特工团队进入他人梦境,从他人的潜意识中盗取机密,并重塑他人梦境的故事。",
        "清晨拉开窗帘,阳光洒在窗台的Bloomixy花艺礼盒上——薰衣草香薰蜡烛唤醒嗅觉,永生花束折射出晨露般光泽。设计师将“自然绽放美学”融入每个细节:手工陶瓷花瓶可作首饰收纳,香薰精油含依兰依兰舒缓配方。限量款附赠《365天插花灵感手册》,让每个平凡日子都有花开仪式感。\n宴会厅灯光暗下的刹那,Glimmeria星月系列耳坠开始发光——瑞士冷珐琅工艺让蓝宝石如银河流动,钛合金骨架仅3.2g无负重感。设计师秘密:内置微型重力感应器,随步伐产生0.01mm振幅,打造“行走的星光”。七夕限定礼盒含星座定制铭牌,让爱意如星辰永恒闪耀。",
        "电影1:“黑暗骑士”(演员:克里斯蒂安·贝尔、希斯·莱杰;导演:克里斯托弗·诺兰);电影2:“盗梦空间”(演员:莱昂纳多·迪卡普里奥;导演:克里斯托弗·诺兰);电影3:“钢琴家”(演员:艾德里安·布洛迪;导演:罗曼·波兰斯基);电影4:“泰坦尼克号”(演员:莱昂纳多·迪卡普里奥;导演:詹姆斯·卡梅隆);电影5:“阿凡达”(演员:萨姆·沃辛顿;导演:詹姆斯·卡梅隆);电影6:“南方公园:大电影”(演员:马特·斯通、托马斯·艾恩格瑞;导演:特雷·帕克)",
    ]
    # 测试分词器
    tokenizer = TextTokenizer(
        vocab_file="checkpoints/bpe.model",
        normalizer=text_normalizer,
    )

    codes = tokenizer.batch_encode(
        cases,
        out_type=int,
    )

    print(f"vocab_size: {tokenizer.vocab_size}")
    # print(f"pad_token: {tokenizer.pad_token}, pad_token_id: {tokenizer.pad_token_id}")
    print(f"bos_token: {tokenizer.bos_token}, bos_token_id: {tokenizer.bos_token_id}")
    print(f"eos_token: {tokenizer.eos_token}, eos_token_id: {tokenizer.eos_token_id}")
    print(f"unk_token: {tokenizer.unk_token}, unk_token_id: {tokenizer.unk_token_id}")
    # 测试拼音 (8474-10201)
    for id in range(8474, 10201):
        pinyin = tokenizer.convert_ids_to_tokens(id)
        if re.match(TextNormalizer.PINYIN_TONE_PATTERN, pinyin, re.IGNORECASE) is None:
            print(f"{pinyin} should be matched")
    for badcase in [
        "beta1", "better1", "voice2", "bala2", "babala2", "hunger2"
    ]:
        if re.match(TextNormalizer.PINYIN_TONE_PATTERN, badcase, re.IGNORECASE) is not None:
            print(f"{badcase} should not be matched!")
    # 不应该有 unk_token_id
    for t in set([*TextTokenizer.punctuation_marks_tokens, ",", "▁,", "-", "▁..."]):
        tokens = tokenizer.convert_tokens_to_ids(t)
        if tokenizer.unk_token_id in tokens:
            print(f"Warning: {t} is unknown token")
        print(f"`{t}`", "->", tokens, "->", tokenizer.convert_ids_to_tokens(tokens))
    for ch in set(tokenizer.normalizer.zh_char_rep_map.values()):
        # 测试 normalize后的字符能被分词器识别
        print(f"`{ch}`", "->", tokenizer.sp_model.Encode(ch, out_type=str))
        print(f"` {ch}`", "->", tokenizer.sp_model.Encode(f" {ch}", out_type=str))
    max_tokens_per_sentence=120
    for i in range(len(cases)):
        print(f"原始文本: {cases[i]}")
        print(f"Normalized: {text_normalizer.normalize(cases[i])}")
        tokens = tokenizer.tokenize(cases[i])
        print("Tokenzied: ", ", ".join([f"`{t}`" for t in tokens]))
        sentences = tokenizer.split_sentences(tokens, max_tokens_per_sentence=max_tokens_per_sentence)
        print("Splitted sentences count:", len(sentences))
        if len(sentences) > 1:
            for j in range(len(sentences)):
                print(f"  {j}, count:", len(sentences[j]), ", tokens:", "".join(sentences[j]))
                if len(sentences[j]) > max_tokens_per_sentence:
                    print(f"Warning: sentence {j} is too long, length: {len(sentences[j])}")
        #print(f"Token IDs (first 10): {codes[i][:10]}")
        if tokenizer.unk_token in codes[i]:
            print(f"Warning: `{cases[i]}` contains UNKNOWN token")
        print(f"Decoded: {tokenizer.decode(codes[i], do_lower_case=True)}")
        print("-" * 50)