Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,785 Bytes
fba9477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
# -*- coding: utf-8 -*-
import os
import traceback
import re
from typing import List, Union, overload
import warnings
from indextts.utils.common import tokenize_by_CJK_char, de_tokenized_by_CJK_char
from sentencepiece import SentencePieceProcessor
class TextNormalizer:
def __init__(self):
self.zh_normalizer = None
self.en_normalizer = None
self.char_rep_map = {
":": ",",
";": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": " ",
"·": "-",
"、": ",",
"...": "…",
",,,": "…",
",,,": "…",
"……": "…",
"“": "'",
"”": "'",
'"': "'",
"‘": "'",
"’": "'",
"(": "'",
")": "'",
"(": "'",
")": "'",
"《": "'",
"》": "'",
"【": "'",
"】": "'",
"[": "'",
"]": "'",
"—": "-",
"~": "-",
"~": "-",
"「": "'",
"」": "'",
":": ",",
}
self.zh_char_rep_map = {
"$": ".",
**self.char_rep_map,
}
def match_email(self, email):
# 正则表达式匹配邮箱格式:数字英文@数字英文.英文
pattern = r"^[a-zA-Z0-9]+@[a-zA-Z0-9]+\.[a-zA-Z]+$"
return re.match(pattern, email) is not None
PINYIN_TONE_PATTERN = r"(?<![a-z])((?:[bpmfdtnlgkhjqxzcsryw]|[zcs]h)?(?:[aeiouüv]|[ae]i|u[aio]|ao|ou|i[aue]|[uüv]e|[uvü]ang?|uai|[aeiuv]n|[aeio]ng|ia[no]|i[ao]ng)|ng|er)([1-5])"
"""
匹配拼音声调格式:pinyin+数字,声调1-5,5表示轻声
例如:xuan4, jve2, ying1, zhong4, shang5
不匹配:beta1, voice2
"""
NAME_PATTERN = r"[\u4e00-\u9fff]+(?:[-·—][\u4e00-\u9fff]+){1,2}"
"""
匹配人名,格式:中文·中文,中文·中文-中文
例如:克里斯托弗·诺兰,约瑟夫·高登-莱维特
"""
# 匹配常见英语缩写 's,仅用于替换为 is,不匹配所有 's
ENGLISH_CONTRACTION_PATTERN = r"(what|where|who|which|how|t?here|it|s?he|that|this)'s"
def use_chinese(self, s):
has_chinese = bool(re.search(r"[\u4e00-\u9fff]", s))
has_alpha = bool(re.search(r"[a-zA-Z]", s))
is_email = self.match_email(s)
if has_chinese or not has_alpha or is_email:
return True
has_pinyin = bool(re.search(TextNormalizer.PINYIN_TONE_PATTERN, s, re.IGNORECASE))
return has_pinyin
def load(self):
# print(os.path.join(os.path.dirname(os.path.abspath(__file__)), ".."))
# sys.path.append(model_dir)
import platform
if self.zh_normalizer is not None and self.en_normalizer is not None:
return
if platform.system() == "Darwin":
from wetext import Normalizer
self.zh_normalizer = Normalizer(remove_erhua=False, lang="zh", operator="tn")
self.en_normalizer = Normalizer(lang="en", operator="tn")
else:
from tn.chinese.normalizer import Normalizer as NormalizerZh
from tn.english.normalizer import Normalizer as NormalizerEn
# use new cache dir for build tagger rules with disable remove_interjections and remove_erhua
cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tagger_cache")
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
with open(os.path.join(cache_dir, ".gitignore"), "w") as f:
f.write("*\n")
self.zh_normalizer = NormalizerZh(
cache_dir=cache_dir, remove_interjections=False, remove_erhua=False, overwrite_cache=False
)
self.en_normalizer = NormalizerEn(overwrite_cache=False)
def normalize(self, text: str) -> str:
if not self.zh_normalizer or not self.en_normalizer:
print("Error, text normalizer is not initialized !!!")
return ""
if self.use_chinese(text):
text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
replaced_text, pinyin_list = self.save_pinyin_tones(text.rstrip())
replaced_text, original_name_list = self.save_names(replaced_text)
try:
result = self.zh_normalizer.normalize(replaced_text)
except Exception:
result = ""
print(traceback.format_exc())
# 恢复人名
result = self.restore_names(result, original_name_list)
# 恢复拼音声调
result = self.restore_pinyin_tones(result, pinyin_list)
pattern = re.compile("|".join(re.escape(p) for p in self.zh_char_rep_map.keys()))
result = pattern.sub(lambda x: self.zh_char_rep_map[x.group()], result)
else:
try:
text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
result = self.en_normalizer.normalize(text)
except Exception:
result = text
print(traceback.format_exc())
pattern = re.compile("|".join(re.escape(p) for p in self.char_rep_map.keys()))
result = pattern.sub(lambda x: self.char_rep_map[x.group()], result)
return result
def correct_pinyin(self, pinyin: str):
"""
将 jqx 的韵母为 u/ü 的拼音转换为 v
如:ju -> jv , que -> qve, xün -> xvn
"""
if pinyin[0] not in "jqxJQX":
return pinyin
# 匹配 jqx 的韵母为 u/ü 的拼音
pattern = r"([jqx])[uü](n|e|an)*(\d)"
repl = r"\g<1>v\g<2>\g<3>"
pinyin = re.sub(pattern, repl, pinyin, flags=re.IGNORECASE)
return pinyin.upper()
def save_names(self, original_text):
"""
替换人名为占位符 <n_a>、 <n_b>, ...
例如:克里斯托弗·诺兰 -> <n_a>
"""
# 人名
name_pattern = re.compile(TextNormalizer.NAME_PATTERN, re.IGNORECASE)
original_name_list = re.findall(name_pattern, original_text)
if len(original_name_list) == 0:
return (original_text, None)
original_name_list = list(set("".join(n) for n in original_name_list))
transformed_text = original_text
# 替换占位符 <n_a>、 <n_b>, ...
for i, name in enumerate(original_name_list):
number = chr(ord("a") + i)
transformed_text = transformed_text.replace(name, f"<n_{number}>")
return transformed_text, original_name_list
def restore_names(self, normalized_text, original_name_list):
"""
恢复人名为原来的文字
例如:<n_a> -> original_name_list[0]
"""
if not original_name_list or len(original_name_list) == 0:
return normalized_text
transformed_text = normalized_text
# 替换为占位符 <n_a>、 <n_b>, ...
for i, name in enumerate(original_name_list):
number = chr(ord("a") + i)
transformed_text = transformed_text.replace(f"<n_{number}>", name)
return transformed_text
def save_pinyin_tones(self, original_text):
"""
替换拼音声调为占位符 <pinyin_a>, <pinyin_b>, ...
例如:xuan4 -> <pinyin_a>
"""
# 声母韵母+声调数字
origin_pinyin_pattern = re.compile(TextNormalizer.PINYIN_TONE_PATTERN, re.IGNORECASE)
original_pinyin_list = re.findall(origin_pinyin_pattern, original_text)
if len(original_pinyin_list) == 0:
return (original_text, None)
original_pinyin_list = list(set("".join(p) for p in original_pinyin_list))
transformed_text = original_text
# 替换为占位符 <pinyin_a>, <pinyin_b>, ...
for i, pinyin in enumerate(original_pinyin_list):
number = chr(ord("a") + i)
transformed_text = transformed_text.replace(pinyin, f"<pinyin_{number}>")
# print("original_text: ", original_text)
# print("transformed_text: ", transformed_text)
return transformed_text, original_pinyin_list
def restore_pinyin_tones(self, normalized_text, original_pinyin_list):
"""
恢复拼音中的音调数字(1-5)为原来的拼音
例如:<pinyin_a> -> original_pinyin_list[0]
"""
if not original_pinyin_list or len(original_pinyin_list) == 0:
return normalized_text
transformed_text = normalized_text
# 替换占位符 <pinyin_a>, <pinyin_b>, ...
for i, pinyin in enumerate(original_pinyin_list):
number = chr(ord("a") + i)
pinyin = self.correct_pinyin(pinyin)
transformed_text = transformed_text.replace(f"<pinyin_{number}>", pinyin)
# print("normalized_text: ", normalized_text)
# print("transformed_text: ", transformed_text)
return transformed_text
class TextTokenizer:
def __init__(self, vocab_file: str, normalizer: TextNormalizer = None):
self.vocab_file = vocab_file
self.normalizer = normalizer
if self.vocab_file is None:
raise ValueError("vocab_file is None")
if not os.path.exists(self.vocab_file):
raise ValueError(f"vocab_file {self.vocab_file} does not exist")
if self.normalizer:
self.normalizer.load()
# 加载词表
self.sp_model = SentencePieceProcessor(model_file=self.vocab_file)
self.pre_tokenizers = [
# 预处理器
tokenize_by_CJK_char,
]
@property
def vocab_size(self):
return self.sp_model.GetPieceSize()
@property
def unk_token(self):
return "<unk>"
@property
def pad_token(self):
return None
@property
def bos_token(self):
return "<s>"
@property
def eos_token(self):
return "</s>"
@property
def pad_token_id(self):
return -1
@property
def bos_token_id(self):
return 0
@property
def eos_token_id(self):
return 1
@property
def unk_token_id(self):
return self.sp_model.unk_id()
@property
def special_tokens_map(self):
return {
"unk_token": self.unk_token,
"pad_token": self.pad_token,
"bos_token": self.bos_token,
"eos_token": self.eos_token,
}
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
return vocab
@overload
def convert_ids_to_tokens(self, ids: int) -> str: ...
@overload
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]: ...
def convert_ids_to_tokens(self, ids: Union[List[int], int]):
return self.sp_model.IdToPiece(ids)
def convert_tokens_to_ids(self, tokens: Union[List[str], str]) -> List[int]:
if isinstance(tokens, str):
tokens = [tokens]
return [self.sp_model.PieceToId(token) for token in tokens]
def tokenize(self, text: str) -> List[str]:
return self.encode(text, out_type=str)
def encode(self, text: str, **kwargs):
if len(text) == 0:
return []
if len(text.strip()) == 1:
return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)
# 预处理
if self.normalizer:
text = self.normalizer.normalize(text)
if len(self.pre_tokenizers) > 0:
for pre_tokenizer in self.pre_tokenizers:
text = pre_tokenizer(text)
return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)
def batch_encode(self, texts: List[str], **kwargs):
# 预处理
if self.normalizer:
texts = [self.normalizer.normalize(text) for text in texts]
if len(self.pre_tokenizers) > 0:
for pre_tokenizer in self.pre_tokenizers:
texts = [pre_tokenizer(text) for text in texts]
return self.sp_model.Encode(texts, out_type=kwargs.pop("out_type", int), **kwargs)
def decode(self, ids: Union[List[int], int], do_lower_case=False, **kwargs):
if isinstance(ids, int):
ids = [ids]
decoded = self.sp_model.Decode(ids, out_type=kwargs.pop("out_type", str), **kwargs)
return de_tokenized_by_CJK_char(decoded, do_lower_case=do_lower_case)
@staticmethod
def split_sentences_by_token(
tokenized_str: List[str], split_tokens: List[str], max_tokens_per_sentence: int
) -> List[List[str]]:
"""
将tokenize后的结果按特定token进一步分割
"""
# 处理特殊情况
if len(tokenized_str) == 0:
return []
sentences: List[List[str]] = []
current_sentence = []
current_sentence_tokens_len = 0
for i in range(len(tokenized_str)):
token = tokenized_str[i]
current_sentence.append(token)
current_sentence_tokens_len += 1
if current_sentence_tokens_len <= max_tokens_per_sentence:
if token in split_tokens and current_sentence_tokens_len > 2:
if i < len(tokenized_str) - 1:
if tokenized_str[i + 1] in ["'", "▁'"]:
# 后续token是',则不切分
current_sentence.append(tokenized_str[i + 1])
i += 1
sentences.append(current_sentence)
current_sentence = []
current_sentence_tokens_len = 0
continue
# 如果当前tokens的长度超过最大限制
if not ("," in split_tokens or "▁," in split_tokens ) and ("," in current_sentence or "▁," in current_sentence):
# 如果当前tokens中有,,则按,分割
sub_sentences = TextTokenizer.split_sentences_by_token(
current_sentence, [",", "▁,"], max_tokens_per_sentence=max_tokens_per_sentence
)
elif "-" not in split_tokens and "-" in current_sentence:
# 没有,,则按-分割
sub_sentences = TextTokenizer.split_sentences_by_token(
current_sentence, ["-"], max_tokens_per_sentence=max_tokens_per_sentence
)
else:
# 按照长度分割
sub_sentences = []
for j in range(0, len(current_sentence), max_tokens_per_sentence):
if j + max_tokens_per_sentence < len(current_sentence):
sub_sentences.append(current_sentence[j : j + max_tokens_per_sentence])
else:
sub_sentences.append(current_sentence[j:])
warnings.warn(
f"The tokens length of sentence exceeds limit: {max_tokens_per_sentence}, "
f"Tokens in sentence: {current_sentence}."
"Maybe unexpected behavior",
RuntimeWarning,
)
sentences.extend(sub_sentences)
current_sentence = []
current_sentence_tokens_len = 0
if current_sentence_tokens_len > 0:
assert current_sentence_tokens_len <= max_tokens_per_sentence
sentences.append(current_sentence)
# 如果相邻的句子加起来长度小于最大限制,则合并
merged_sentences = []
for sentence in sentences:
if len(sentence) == 0:
continue
if len(merged_sentences) == 0:
merged_sentences.append(sentence)
elif len(merged_sentences[-1]) + len(sentence) <= max_tokens_per_sentence:
merged_sentences[-1] = merged_sentences[-1] + sentence
else:
merged_sentences.append(sentence)
return merged_sentences
punctuation_marks_tokens = [
".",
"!",
"?",
"▁.",
# "▁!", # unk
"▁?",
"▁...", # ellipsis
]
def split_sentences(self, tokenized: List[str], max_tokens_per_sentence=120) -> List[List[str]]:
return TextTokenizer.split_sentences_by_token(
tokenized, self.punctuation_marks_tokens, max_tokens_per_sentence=max_tokens_per_sentence
)
if __name__ == "__main__":
# 测试程序
text_normalizer = TextNormalizer()
cases = [
"IndexTTS 正式发布1.0版本了,效果666",
"晕XUAN4是一种GAN3觉",
"我爱你!",
"I love you!",
"“我爱你”的英语是“I love you”",
"2.5平方电线",
"共465篇,约315万字",
"2002年的第一场雪,下在了2003年",
"速度是10km/h",
"现在是北京时间2025年01月11日 20:00",
"他这条裤子是2012年买的,花了200块钱",
"电话:135-4567-8900",
"1键3连",
"他这条视频点赞3000+,评论1000+,收藏500+",
"这是1024元的手机,你要吗?",
"受不liao3你了",
"“衣裳”不读衣chang2,而是读衣shang5",
"最zhong4要的是:不要chong2蹈覆辙",
"不zuo1死就不会死",
"See you at 8:00 AM",
"8:00 AM 开会",
"Couting down 3, 2, 1, go!",
"数到3就开始:1、2、3",
"This sales for 2.5% off, only $12.5.",
"5G网络是4G网络的升级版,2G网络是3G网络的前身",
"苹果于2030/1/2发布新 iPhone 2X 系列手机,最低售价仅 ¥12999",
"这酒...里...有毒...",
# 异常case
"只有,,,才是最好的",
"babala2是什么?", # babala二是什么?
"用beta1测试", # 用beta一测试
"have you ever been to beta2?", # have you ever been to beta two?
"such as XTTS, CosyVoice2, Fish-Speech, and F5-TTS", # such as xtts,cosyvoice two,fish-speech,and f five-tts
"where's the money?", # where is the money?
"who's there?", # who is there?
"which's the best?", # which is the best?
"how's it going?", # how is it going?
"今天是个好日子 it's a good day", # 今天是个好日子 it is a good day
# 人名
"约瑟夫·高登-莱维特(Joseph Gordon-Levitt is an American actor)",
"蒂莫西·唐纳德·库克(英文名:Timothy Donald Cook),通称蒂姆·库克(Tim Cook),美国商业经理、工业工程师和工业开发商,现任苹果公司首席执行官。",
# 长句子
"《盗梦空间》是由美国华纳兄弟影片公司出品的电影,由克里斯托弗·诺兰执导并编剧,莱昂纳多·迪卡普里奥、玛丽昂·歌迪亚、约瑟夫·高登-莱维特、艾利奥特·佩吉、汤姆·哈迪等联袂主演,2010年7月16日在美国上映,2010年9月1日在中国内地上映,2020年8月28日在中国内地重映。影片剧情游走于梦境与现实之间,被定义为“发生在意识结构内的当代动作科幻片”,讲述了由莱昂纳多·迪卡普里奥扮演的造梦师,带领特工团队进入他人梦境,从他人的潜意识中盗取机密,并重塑他人梦境的故事。",
"清晨拉开窗帘,阳光洒在窗台的Bloomixy花艺礼盒上——薰衣草香薰蜡烛唤醒嗅觉,永生花束折射出晨露般光泽。设计师将“自然绽放美学”融入每个细节:手工陶瓷花瓶可作首饰收纳,香薰精油含依兰依兰舒缓配方。限量款附赠《365天插花灵感手册》,让每个平凡日子都有花开仪式感。\n宴会厅灯光暗下的刹那,Glimmeria星月系列耳坠开始发光——瑞士冷珐琅工艺让蓝宝石如银河流动,钛合金骨架仅3.2g无负重感。设计师秘密:内置微型重力感应器,随步伐产生0.01mm振幅,打造“行走的星光”。七夕限定礼盒含星座定制铭牌,让爱意如星辰永恒闪耀。",
"电影1:“黑暗骑士”(演员:克里斯蒂安·贝尔、希斯·莱杰;导演:克里斯托弗·诺兰);电影2:“盗梦空间”(演员:莱昂纳多·迪卡普里奥;导演:克里斯托弗·诺兰);电影3:“钢琴家”(演员:艾德里安·布洛迪;导演:罗曼·波兰斯基);电影4:“泰坦尼克号”(演员:莱昂纳多·迪卡普里奥;导演:詹姆斯·卡梅隆);电影5:“阿凡达”(演员:萨姆·沃辛顿;导演:詹姆斯·卡梅隆);电影6:“南方公园:大电影”(演员:马特·斯通、托马斯·艾恩格瑞;导演:特雷·帕克)",
]
# 测试分词器
tokenizer = TextTokenizer(
vocab_file="checkpoints/bpe.model",
normalizer=text_normalizer,
)
codes = tokenizer.batch_encode(
cases,
out_type=int,
)
print(f"vocab_size: {tokenizer.vocab_size}")
# print(f"pad_token: {tokenizer.pad_token}, pad_token_id: {tokenizer.pad_token_id}")
print(f"bos_token: {tokenizer.bos_token}, bos_token_id: {tokenizer.bos_token_id}")
print(f"eos_token: {tokenizer.eos_token}, eos_token_id: {tokenizer.eos_token_id}")
print(f"unk_token: {tokenizer.unk_token}, unk_token_id: {tokenizer.unk_token_id}")
# 测试拼音 (8474-10201)
for id in range(8474, 10201):
pinyin = tokenizer.convert_ids_to_tokens(id)
if re.match(TextNormalizer.PINYIN_TONE_PATTERN, pinyin, re.IGNORECASE) is None:
print(f"{pinyin} should be matched")
for badcase in [
"beta1", "better1", "voice2", "bala2", "babala2", "hunger2"
]:
if re.match(TextNormalizer.PINYIN_TONE_PATTERN, badcase, re.IGNORECASE) is not None:
print(f"{badcase} should not be matched!")
# 不应该有 unk_token_id
for t in set([*TextTokenizer.punctuation_marks_tokens, ",", "▁,", "-", "▁..."]):
tokens = tokenizer.convert_tokens_to_ids(t)
if tokenizer.unk_token_id in tokens:
print(f"Warning: {t} is unknown token")
print(f"`{t}`", "->", tokens, "->", tokenizer.convert_ids_to_tokens(tokens))
for ch in set(tokenizer.normalizer.zh_char_rep_map.values()):
# 测试 normalize后的字符能被分词器识别
print(f"`{ch}`", "->", tokenizer.sp_model.Encode(ch, out_type=str))
print(f"` {ch}`", "->", tokenizer.sp_model.Encode(f" {ch}", out_type=str))
max_tokens_per_sentence=120
for i in range(len(cases)):
print(f"原始文本: {cases[i]}")
print(f"Normalized: {text_normalizer.normalize(cases[i])}")
tokens = tokenizer.tokenize(cases[i])
print("Tokenzied: ", ", ".join([f"`{t}`" for t in tokens]))
sentences = tokenizer.split_sentences(tokens, max_tokens_per_sentence=max_tokens_per_sentence)
print("Splitted sentences count:", len(sentences))
if len(sentences) > 1:
for j in range(len(sentences)):
print(f" {j}, count:", len(sentences[j]), ", tokens:", "".join(sentences[j]))
if len(sentences[j]) > max_tokens_per_sentence:
print(f"Warning: sentence {j} is too long, length: {len(sentences[j])}")
#print(f"Token IDs (first 10): {codes[i][:10]}")
if tokenizer.unk_token in codes[i]:
print(f"Warning: `{cases[i]}` contains UNKNOWN token")
print(f"Decoded: {tokenizer.decode(codes[i], do_lower_case=True)}")
print("-" * 50)
|