Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,180 Bytes
fba9477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import torch
import librosa
import json5
from huggingface_hub import hf_hub_download
from transformers import SeamlessM4TFeatureExtractor, Wav2Vec2BertModel
import safetensors
import numpy as np
from indextts.utils.maskgct.models.codec.kmeans.repcodec_model import RepCodec
from indextts.utils.maskgct.models.tts.maskgct.maskgct_s2a import MaskGCT_S2A
from indextts.utils.maskgct.models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder
import time
def _load_config(config_fn, lowercase=False):
"""Load configurations into a dictionary
Args:
config_fn (str): path to configuration file
lowercase (bool, optional): whether changing keys to lower case. Defaults to False.
Returns:
dict: dictionary that stores configurations
"""
with open(config_fn, "r") as f:
data = f.read()
config_ = json5.loads(data)
if "base_config" in config_:
# load configurations from new path
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"])
p_config_ = _load_config(p_config_path)
config_ = override_config(p_config_, config_)
if lowercase:
# change keys in config_ to lower case
config_ = get_lowercase_keys_config(config_)
return config_
def load_config(config_fn, lowercase=False):
"""Load configurations into a dictionary
Args:
config_fn (str): path to configuration file
lowercase (bool, optional): _description_. Defaults to False.
Returns:
JsonHParams: an object that stores configurations
"""
config_ = _load_config(config_fn, lowercase=lowercase)
# create an JsonHParams object with configuration dict
cfg = JsonHParams(**config_)
return cfg
class JsonHParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = JsonHParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def build_semantic_model(path_='./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt'):
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
semantic_model.eval()
stat_mean_var = torch.load(path_)
semantic_mean = stat_mean_var["mean"]
semantic_std = torch.sqrt(stat_mean_var["var"])
return semantic_model, semantic_mean, semantic_std
def build_semantic_codec(cfg):
semantic_codec = RepCodec(cfg=cfg)
semantic_codec.eval()
return semantic_codec
def build_s2a_model(cfg, device):
soundstorm_model = MaskGCT_S2A(cfg=cfg)
soundstorm_model.eval()
soundstorm_model.to(device)
return soundstorm_model
def build_acoustic_codec(cfg, device):
codec_encoder = CodecEncoder(cfg=cfg.encoder)
codec_decoder = CodecDecoder(cfg=cfg.decoder)
codec_encoder.eval()
codec_decoder.eval()
codec_encoder.to(device)
codec_decoder.to(device)
return codec_encoder, codec_decoder
class Inference_Pipeline():
def __init__(
self,
semantic_model,
semantic_codec,
semantic_mean,
semantic_std,
codec_encoder,
codec_decoder,
s2a_model_1layer,
s2a_model_full,
):
self.semantic_model = semantic_model
self.semantic_codec = semantic_codec
self.semantic_mean = semantic_mean
self.semantic_std = semantic_std
self.codec_encoder = codec_encoder
self.codec_decoder = codec_decoder
self.s2a_model_1layer = s2a_model_1layer
self.s2a_model_full = s2a_model_full
@torch.no_grad()
def get_emb(self, input_features, attention_mask):
vq_emb = self.semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - self.semantic_mean.to(feat)) / self.semantic_std.to(feat)
return feat
@torch.no_grad()
def extract_acoustic_code(self, speech):
vq_emb = self.codec_encoder(speech.unsqueeze(1))
_, vq, _, _, _ = self.codec_decoder.quantizer(vq_emb)
acoustic_code = vq.permute(1, 2, 0)
return acoustic_code
@torch.no_grad()
def get_scode(self, inputs):
semantic_code, feat = self.semantic_codec.quantize(inputs)
# vq = self.semantic_codec.quantizer.vq2emb(semantic_code.unsqueeze(1))
# vq = vq.transpose(1,2)
return semantic_code
@torch.no_grad()
def semantic2acoustic(
self,
combine_semantic_code,
acoustic_code,
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
cfg=2.5,
rescale_cfg=0.75,
):
semantic_code = combine_semantic_code
cond = self.s2a_model_1layer.cond_emb(semantic_code)
prompt = acoustic_code[:, :, :]
predict_1layer = self.s2a_model_1layer.reverse_diffusion(
cond=cond,
prompt=prompt,
temp=1.5,
filter_thres=0.98,
n_timesteps=n_timesteps[:1],
cfg=cfg,
rescale_cfg=rescale_cfg,
)
cond = self.s2a_model_full.cond_emb(semantic_code)
prompt = acoustic_code[:, :, :]
predict_full = self.s2a_model_full.reverse_diffusion(
cond=cond,
prompt=prompt,
temp=1.5,
filter_thres=0.98,
n_timesteps=n_timesteps,
cfg=cfg,
rescale_cfg=rescale_cfg,
gt_code=predict_1layer,
)
vq_emb = self.codec_decoder.vq2emb(
predict_full.permute(2, 0, 1), n_quantizers=12
)
recovered_audio = self.codec_decoder(vq_emb)
prompt_vq_emb = self.codec_decoder.vq2emb(
prompt.permute(2, 0, 1), n_quantizers=12
)
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb)
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
recovered_audio = recovered_audio[0][0].cpu().numpy()
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio])
return combine_audio, recovered_audio
def s2a_inference(
self,
prompt_speech_path,
combine_semantic_code,
cfg=2.5,
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
cfg_s2a=2.5,
rescale_cfg_s2a=0.75,
):
speech = librosa.load(prompt_speech_path, sr=24000)[0]
acoustic_code = self.extract_acoustic_code(
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device)
)
_, recovered_audio = self.semantic2acoustic(
combine_semantic_code,
acoustic_code,
n_timesteps=n_timesteps_s2a,
cfg=cfg_s2a,
rescale_cfg=rescale_cfg_s2a,
)
return recovered_audio
@torch.no_grad()
def gt_inference(
self,
prompt_speech_path,
combine_semantic_code,
):
speech = librosa.load(prompt_speech_path, sr=24000)[0]
'''
acoustic_code = self.extract_acoustic_code(
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device)
)
prompt = acoustic_code[:, :, :]
prompt_vq_emb = self.codec_decoder.vq2emb(
prompt.permute(2, 0, 1), n_quantizers=12
)
'''
prompt_vq_emb = self.codec_encoder(torch.tensor(speech).unsqueeze(0).unsqueeze(1).to(combine_semantic_code.device))
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb)
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
return recovered_prompt_audio
|