IndexTTS-2-Demo / indextts /gpt /conformer_encoder.py
kemuriririn's picture
init
fba9477
from typing import Optional, Tuple
import torch
import torch.nn as nn
from indextts.gpt.conformer.attention import (MultiHeadedAttention,
RelPositionMultiHeadedAttention)
from indextts.gpt.conformer.embedding import (NoPositionalEncoding,
PositionalEncoding,
RelPositionalEncoding)
from indextts.gpt.conformer.subsampling import (Conv2dSubsampling2,
Conv2dSubsampling4,
Conv2dSubsampling6,
Conv2dSubsampling8,
LinearNoSubsampling)
from indextts.utils.common import make_pad_mask
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
FeedForward are appied on each position of the sequence.
The output dim is same with the input dim.
Args:
idim (int): Input dimenstion.
hidden_units (int): The number of hidden units.
dropout_rate (float): Dropout rate.
activation (torch.nn.Module): Activation function
"""
def __init__(self,
idim: int,
hidden_units: int,
dropout_rate: float,
activation: torch.nn.Module = torch.nn.ReLU()):
"""Construct a PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__()
self.w_1 = torch.nn.Linear(idim, hidden_units)
self.activation = activation
self.dropout = torch.nn.Dropout(dropout_rate)
self.w_2 = torch.nn.Linear(hidden_units, idim)
def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Forward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
"""
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model."""
def __init__(self,
channels: int,
kernel_size: int = 15,
activation: nn.Module = nn.ReLU(),
bias: bool = True):
"""Construct an ConvolutionModule object.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
causal (int): Whether use causal convolution or not
"""
super().__init__()
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
# self.lorder is used to distinguish if it's a causal convolution,
# if self.lorder > 0: it's a causal convolution, the input will be
# padded with self.lorder frames on the left in forward.
# else: it's a symmetrical convolution
# kernel_size should be an odd number for none causal convolution
assert (kernel_size - 1) % 2 == 0
padding = (kernel_size - 1) // 2
self.lorder = 0
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=padding,
groups=channels,
bias=bias,
)
self.use_layer_norm = True
self.norm = nn.LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
def forward(
self,
x: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
cache: torch.Tensor = torch.zeros((0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
(0, 0, 0) means fake mask.
cache (torch.Tensor): left context cache, it is only
used in causal convolution (#batch, channels, cache_t),
(0, 0, 0) meas fake cache.
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2) # (#batch, channels, time)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
if self.lorder > 0:
if cache.size(2) == 0: # cache_t == 0
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
else:
assert cache.size(0) == x.size(0) # equal batch
assert cache.size(1) == x.size(1) # equal channel
x = torch.cat((cache, x), dim=2)
assert (x.size(2) > self.lorder)
new_cache = x[:, :, -self.lorder:]
else:
# It's better we just return None if no cache is required,
# However, for JIT export, here we just fake one tensor instead of
# None.
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.activation(self.norm(x))
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.pointwise_conv2(x)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
return x.transpose(1, 2), new_cache
class ConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
concat_after (bool): Whether to concat attention layer's input and
output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
dropout_rate: float = 0.1,
normalize_before: bool = True,
concat_after: bool = False,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size,
eps=1e-5) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-5) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
else:
self.concat_linear = nn.Identity()
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
(0, 0, 0) means fake mask.
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time).
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
x_att, new_att_cache = self.self_attn(
x, x, x, mask, pos_emb, att_cache)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
class BaseEncoder(torch.nn.Module):
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
concat_after: bool = False,
):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
concat_after (bool): whether to concat attention layer's input
and output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
"""
super().__init__()
self._output_size = output_size
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "rel_pos":
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "no_pos":
pos_enc_class = NoPositionalEncoding
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
subsampling_class = LinearNoSubsampling
elif input_layer == "conv2d2":
subsampling_class = Conv2dSubsampling2
elif input_layer == "conv2d":
subsampling_class = Conv2dSubsampling4
elif input_layer == "conv2d6":
subsampling_class = Conv2dSubsampling6
elif input_layer == "conv2d8":
subsampling_class = Conv2dSubsampling8
else:
raise ValueError("unknown input_layer: " + input_layer)
self.embed = subsampling_class(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, dropout_rate),
)
self.normalize_before = normalize_before
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
xs, pos_emb, masks = self.embed(xs, masks)
chunk_masks = masks
mask_pad = masks # (B, 1, T/subsample_rate)
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
class ConformerEncoder(BaseEncoder):
"""Conformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
concat_after: bool = False,
macaron_style: bool = False,
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
concat_after)
activation = torch.nn.SiLU()
# self-attention module definition
if pos_enc_layer_type != "rel_pos":
encoder_selfattn_layer = MultiHeadedAttention
else:
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
dropout_rate,
)
# feed-forward module definition
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer = ConvolutionModule
convolution_layer_args = (output_size,
cnn_module_kernel,
activation,)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(
*positionwise_layer_args) if macaron_style else None,
convolution_layer(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
concat_after,
) for _ in range(num_blocks)
])