Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchaudio | |
from indextts.infer import IndexTTS | |
from indextts.utils.feature_extractors import MelSpectrogramFeatures | |
from torch.nn import functional as F | |
if __name__ == "__main__": | |
""" | |
Test the padding of text tokens in inference. | |
``` | |
python tests/padding_test.py checkpoints | |
python tests/padding_test.py IndexTTS-1.5 | |
``` | |
""" | |
import transformers | |
transformers.set_seed(42) | |
import sys | |
sys.path.append("..") | |
if len(sys.argv) > 1: | |
model_dir = sys.argv[1] | |
else: | |
model_dir = "checkpoints" | |
audio_prompt="tests/sample_prompt.wav" | |
tts = IndexTTS(cfg_path=f"{model_dir}/config.yaml", model_dir=model_dir, is_fp16=False, use_cuda_kernel=False) | |
text = "晕 XUAN4 是 一 种 not very good GAN3 觉" | |
text_tokens = tts.tokenizer.encode(text) | |
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=tts.device).unsqueeze(0) # [1, L] | |
audio, sr = torchaudio.load(audio_prompt) | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
audio = torchaudio.transforms.Resample(sr, 24000)(audio) | |
auto_conditioning = MelSpectrogramFeatures()(audio).to(tts.device) | |
cond_mel_lengths = torch.tensor([auto_conditioning.shape[-1]]).to(tts.device) | |
with torch.no_grad(): | |
kwargs = { | |
"cond_mel_lengths": cond_mel_lengths, | |
"do_sample": False, | |
"top_p": 0.8, | |
"top_k": None, | |
"temperature": 1.0, | |
"num_return_sequences": 1, | |
"length_penalty": 0.0, | |
"num_beams": 1, | |
"repetition_penalty": 10.0, | |
"max_generate_length": 100, | |
} | |
# baseline for non-pad | |
baseline = tts.gpt.inference_speech(auto_conditioning, text_tokens, **kwargs) | |
baseline = baseline.squeeze(0) | |
print("Inference padded text tokens...") | |
pad_text_tokens = [ | |
F.pad(text_tokens, (8, 0), value=0), # left bos | |
F.pad(text_tokens, (0, 8), value=1), # right eos | |
F.pad(F.pad(text_tokens, (4, 0), value=0), (0, 4), value=1), # both side | |
F.pad(F.pad(text_tokens, (6, 0), value=0), (0, 2), value=1), | |
F.pad(F.pad(text_tokens, (0, 4), value=0), (0, 4), value=1), | |
] | |
output_for_padded = [] | |
for t in pad_text_tokens: | |
# test for each padded text | |
out = tts.gpt.inference_speech(auto_conditioning, text_tokens, **kwargs) | |
output_for_padded.append(out.squeeze(0)) | |
# batched inference | |
print("Inference padded text tokens as one batch...") | |
batched_text_tokens = torch.cat(pad_text_tokens, dim=0).to(tts.device) | |
assert len(pad_text_tokens) == batched_text_tokens.shape[0] and batched_text_tokens.ndim == 2 | |
batch_output = tts.gpt.inference_speech(auto_conditioning, batched_text_tokens, **kwargs) | |
del pad_text_tokens | |
mismatch_idx = [] | |
print("baseline:", baseline.shape, baseline) | |
print("--"*10) | |
print("baseline vs padded output:") | |
for i in range(len(output_for_padded)): | |
if not baseline.equal(output_for_padded[i]): | |
mismatch_idx.append(i) | |
if len(mismatch_idx) > 0: | |
print("mismatch:", mismatch_idx) | |
for i in mismatch_idx: | |
print(f"[{i}]: {output_for_padded[i]}") | |
else: | |
print("all matched") | |
del output_for_padded | |
print("--"*10) | |
print("baseline vs batched output:") | |
mismatch_idx = [] | |
for i in range(batch_output.shape[0]): | |
if not baseline.equal(batch_output[i]): | |
mismatch_idx.append(i) | |
if len(mismatch_idx) > 0: | |
print("mismatch:", mismatch_idx) | |
for i in mismatch_idx: | |
print(f"[{i}]: {batch_output[i]}") | |
else: | |
print("all matched") | |
print("Test finished.") |