import json
import logging
import spaces
import os
import sys
import threading
import time
import warnings
import pandas as pd
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
sys.path.append(os.path.join(current_dir, "indextts"))
import argparse
parser = argparse.ArgumentParser(description="IndexTTS WebUI")
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
parser.add_argument("--model_dir", type=str, default="checkpoints", help="Model checkpoints directory")
parser.add_argument("--is_fp16", action="store_true", default=False, help="Fp16 infer")
cmd_args = parser.parse_args()
from tools.download_files import download_model_from_huggingface
download_model_from_huggingface(os.path.join(current_dir,"checkpoints"),
os.path.join(current_dir, "checkpoints","hf_cache"))
import gradio as gr
from indextts import infer
from indextts.infer_v2 import IndexTTS2
from tools.i18n.i18n import I18nAuto
from modelscope.hub import api
i18n = I18nAuto(language="Auto")
MODE = 'local'
tts = IndexTTS2(model_dir=cmd_args.model_dir,
cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
is_fp16=False,use_cuda_kernel=False)
# 支持的语言列表
LANGUAGES = {
"中文": "zh_CN",
"English": "en_US"
}
EMO_CHOICES = [i18n("与音色参考音频相同"),
i18n("使用情感参考音频"),
i18n("使用情感向量控制"),
i18n("使用情感描述文本控制")]
os.makedirs("outputs/tasks",exist_ok=True)
os.makedirs("prompts",exist_ok=True)
MAX_LENGTH_TO_USE_SPEED = 70
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
example_cases = []
for line in f:
line = line.strip()
if not line:
continue
example = json.loads(line)
if example.get("emo_audio",None):
emo_audio_path = os.path.join("examples",example["emo_audio"])
else:
emo_audio_path = None
example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
EMO_CHOICES[example.get("emo_mode",0)],
example.get("text"),
emo_audio_path,
example.get("emo_weight",1.0),
example.get("emo_text",""),
example.get("emo_vec_1",0),
example.get("emo_vec_2",0),
example.get("emo_vec_3",0),
example.get("emo_vec_4",0),
example.get("emo_vec_5",0),
example.get("emo_vec_6",0),
example.get("emo_vec_7",0),
example.get("emo_vec_8",0)]
)
@spaces.GPU
def gen_single(emo_control_method,prompt, text,
emo_ref_path, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_sentence=120,
*args, progress=gr.Progress()):
output_path = None
if not output_path:
output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
# set gradio progress
tts.gr_progress = progress
do_sample, top_p, top_k, temperature, \
length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
kwargs = {
"do_sample": bool(do_sample),
"top_p": float(top_p),
"top_k": int(top_k) if int(top_k) > 0 else None,
"temperature": float(temperature),
"length_penalty": float(length_penalty),
"num_beams": num_beams,
"repetition_penalty": float(repetition_penalty),
"max_mel_tokens": int(max_mel_tokens),
# "typical_sampling": bool(typical_sampling),
# "typical_mass": float(typical_mass),
}
if type(emo_control_method) is not int:
emo_control_method = emo_control_method.value
if emo_control_method == 0:
emo_ref_path = None
emo_weight = 1.0
if emo_control_method == 1:
emo_weight = emo_weight
if emo_control_method == 2:
vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
vec_sum = sum([vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8])
if vec_sum > 1.5:
gr.Warning(i18n("情感向量之和不能超过1.5,请调整后重试。"))
return
else:
vec = None
print(f"Emo control mode:{emo_control_method},vec:{vec}")
output = tts.infer(spk_audio_prompt=prompt, text=text,
output_path=output_path,
emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
emo_vector=vec,
use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
verbose=cmd_args.verbose,
max_text_tokens_per_sentence=int(max_text_tokens_per_sentence),
**kwargs)
return gr.update(value=output,visible=True)
def update_prompt_audio():
update_button = gr.update(interactive=True)
return update_button
with gr.Blocks(title="IndexTTS Demo") as demo:
mutex = threading.Lock()
gr.HTML('''
IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech
''')
with gr.Tab(i18n("音频生成")):
with gr.Row():
os.makedirs("prompts",exist_ok=True)
prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
sources=["upload","microphone"],type="filepath")
prompt_list = os.listdir("prompts")
default = ''
if prompt_list:
default = prompt_list[0]
with gr.Column():
input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
with gr.Accordion(i18n("功能设置")):
# 情感控制选项部分
with gr.Row():
emo_control_method = gr.Radio(
choices=EMO_CHOICES,
type="index",
value=EMO_CHOICES[0],label=i18n("情感控制方式"))
# 情感参考音频部分
with gr.Group(visible=False) as emotion_reference_group:
with gr.Row():
emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")
with gr.Row():
emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.6, value=0.8, step=0.01)
# 情感随机采样
with gr.Row():
emo_random = gr.Checkbox(label=i18n("情感随机采样"),value=False,visible=False)
# 情感向量控制部分
with gr.Group(visible=False) as emotion_vector_group:
with gr.Row():
with gr.Column():
vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
with gr.Column():
vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
with gr.Group(visible=False) as emo_text_group:
with gr.Row():
emo_text = gr.Textbox(label=i18n("情感描述文本"), placeholder=i18n("请输入情感描述文本"), value="", info=i18n("例如:高兴,愤怒,悲伤等"))
with gr.Accordion(i18n("高级生成参数设置"), open=False):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')}[Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)_")
with gr.Row():
do_sample = gr.Checkbox(label="do_sample", value=True, info="是否进行采样")
temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
with gr.Row():
top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
with gr.Row():
repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info="生成Token最大数量,过小导致音频被截断", key="max_mel_tokens")
# with gr.Row():
# typical_sampling = gr.Checkbox(label="typical_sampling", value=False, info="不建议使用")
# typical_mass = gr.Slider(label="typical_mass", value=0.9, minimum=0.0, maximum=1.0, step=0.1)
with gr.Column(scale=2):
gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
with gr.Row():
max_text_tokens_per_sentence = gr.Slider(
label=i18n("分句最大Token数"), value=120, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_sentence",
info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"),
)
with gr.Accordion(i18n("预览分句结果"), open=True) as sentences_settings:
sentences_preview = gr.Dataframe(
headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
key="sentences_preview",
wrap=True,
)
advanced_params = [
do_sample, top_p, top_k, temperature,
length_penalty, num_beams, repetition_penalty, max_mel_tokens,
# typical_sampling, typical_mass,
]
if len(example_cases) > 0:
gr.Examples(
examples=example_cases,
examples_per_page=20,
inputs=[prompt_audio,
emo_control_method,
input_text_single,
emo_upload,
emo_weight,
emo_text,
vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8]
)
def on_input_text_change(text, max_tokens_per_sentence):
if text and len(text) > 0:
text_tokens_list = tts.tokenizer.tokenize(text)
sentences = tts.tokenizer.split_sentences(text_tokens_list, max_tokens_per_sentence=int(max_tokens_per_sentence))
data = []
for i, s in enumerate(sentences):
sentence_str = ''.join(s)
tokens_count = len(s)
data.append([i, sentence_str, tokens_count])
return {
sentences_preview: gr.update(value=data, visible=True, type="array"),
}
else:
df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
return {
sentences_preview: gr.update(value=df),
}
def on_method_select(emo_control_method):
if emo_control_method == 1:
return (gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
elif emo_control_method == 2:
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False)
)
elif emo_control_method == 3:
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True)
)
else:
return (gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
emo_control_method.select(on_method_select,
inputs=[emo_control_method],
outputs=[emotion_reference_group,
emo_random,
emotion_vector_group,
emo_text_group]
)
input_text_single.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_sentence],
outputs=[sentences_preview]
)
max_text_tokens_per_sentence.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_sentence],
outputs=[sentences_preview]
)
prompt_audio.upload(update_prompt_audio,
inputs=[],
outputs=[gen_button])
gen_button.click(gen_single,
inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_sentence,
*advanced_params,
],
outputs=[output_audio])
if __name__ == "__main__":
demo.queue(20)
demo.launch(server_name=cmd_args.host, server_port=cmd_args.port)