import requests import zipfile import os import argparse def download_file_from_google_drive(file_id, destination): """ 通过文件ID下载Google Drive共享文件 Args: file_id (str): Google Drive文件的ID destination (str): 本地保存路径 """ # 基本的下载URL URL = "https://docs.google.com/uc?export=download" session = requests.Session() # 发起初始GET请求 response = session.get(URL, params={'id': file_id}, stream=True) token = get_confirm_token(response) # 从响应中获取确认令牌(如果需要) if token: # 如果需要确认(大文件) params = {'id': file_id, 'confirm': token} response = session.get(URL, params=params, stream=True) # 将响应内容保存到文件 save_response_content(response, destination) def get_confirm_token(response): """ 从响应中检查是否存在下载确认令牌(cookie) Args: response (requests.Response): 响应对象 Returns: str: 确认令牌的值(如果存在),否则为None """ for key, value in response.cookies.items(): if key.startswith('download_warning'): # 确认令牌的cookie通常以这个开头 return value return None def save_response_content(response, destination, chunk_size=32768): """ 以流式方式将响应内容写入文件,支持大文件下载。 Args: response (requests.Response): 流式响应对象 destination (str): 本地保存路径 chunk_size (int, optional): 每次迭代写入的块大小. Defaults to 32768. """ with open(destination, "wb") as f: for chunk in response.iter_content(chunk_size): if chunk: # 过滤掉保持连接的空白块 f.write(chunk) def download_model_from_modelscope(destination,hf_cache_dir): """ 从ModelScope下载模型(伪代码,需根据实际API实现) Args: model_id (str): ModelScope模型ID destination (str): 本地保存路径 """ print(f"[ModelScope] Downloading models to {destination},model cache dir={hf_cache_dir}") from modelscope import snapshot_download os.makedirs(os.path.join(hf_cache_dir, "models--amphion--MaskGCT"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir, "models--facebook--w2v-bert-2.0"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir, "models--nvidia--bigvgan_v2_22khz_80band_256x"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir, "models--funasr--campplus"), exist_ok=True) snapshot_download("IndexTeam/IndexTTS-2", local_dir="checkpoints") snapshot_download("amphion/MaskGCT", local_dir="checkpoints/hf_cache/models--amphion--MaskGCT") snapshot_download("facebook/w2v-bert-2.0",local_dir="checkpoints/hf_cache/models--facebook--w2v-bert-2.0") snapshot_download("nv-community/bigvgan_v2_22khz_80band_256x",local_dir="checkpoints/hf_cache/models--nvidia--bigvgan_v2_22khz_80band_256x") # models--funasr--campplus snapshot_download("nv-community/bigvgan_v2_22khz_80band_256x",local_dir="checkpoints/hf_cache/models--nvidia--bigvgan_v2_22khz_80band_256x") def download_model_from_huggingface(destination,hf_cache_dir): """ 从HuggingFace下载模型(伪代码,需根据实际API实现) Args: model_id (str): HuggingFace模型ID destination (str): 本地保存路径 """ print(f"[HuggingFace] Downloading models to {destination},model cache dir={hf_cache_dir}") from huggingface_hub import snapshot_download os.makedirs(os.path.join(hf_cache_dir,"models--amphion--MaskGCT"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir,"models--facebook--w2v-bert-2.0"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir, "models--nvidia--bigvgan_v2_22khz_80band_256x"), exist_ok=True) os.makedirs(os.path.join(hf_cache_dir,"models--funasr--campplus"), exist_ok=True) snapshot_download("IndexTeam/IndexTTS-2", local_dir=destination) print("[HuggingFace] IndexTTS-2 Download finished") # snapshot_download("amphion/MaskGCT", local_dir=os.path.join(hf_cache_dir,"models--amphion--MaskGCT")) # print("[HuggingFace] MaskGCT Download finished") # snapshot_download("facebook/w2v-bert-2.0",local_dir=os.path.join(hf_cache_dir,"models--facebook--w2v-bert-2.0")) snapshot_download("facebook/w2v-bert-2.0") print("[HuggingFace] w2v-bert-2.0 Download finished") snapshot_download("nvidia/bigvgan_v2_22khz_80band_256x",local_dir=os.path.join(hf_cache_dir, "models--nvidia--bigvgan_v2_22khz_80band_256x")) print("[HuggingFace] bigvgan_v2_22khz_80band_256x Download finished") snapshot_download("funasr/campplus",local_dir=os.path.join(hf_cache_dir,"models--funasr--campplus")) print("[HuggingFace] campplus Download finished") # 使用示例 if __name__ == "__main__": parser = argparse.ArgumentParser(description="下载文件和模型工具") parser.add_argument('--model_source', choices=['modelscope', 'huggingface'], default=None, help='模型下载来源') args = parser.parse_args() if args.model_source: if args.model_source == 'modelscope': download_model_from_modelscope("checkpoints",os.path.join("checkpoints","hf_cache")) elif args.model_source == 'huggingface': download_model_from_huggingface("checkpoints",os.path.join("checkpoints","hf_cache")) print("Downloading example files from Google Drive...") file_id = "1o_dCMzwjaA2azbGOxAE7-4E7NbJkgdgO" destination = "example_wavs.zip" # 替换为你希望的本地路径 download_file_from_google_drive(file_id, destination) print(f"File downloaded to: {destination}") # 解压下载的zip文件到examples目录 examples_dir = "examples" with zipfile.ZipFile(destination, 'r') as zip_ref: zip_ref.extractall(examples_dir) print(f"File extracted to: {examples_dir}")