File size: 17,605 Bytes
2d660f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d660f6
 
 
 
 
ea1d113
 
2d660f6
ea1d113
2d660f6
ea1d113
2d660f6
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1d113
2d660f6
ea1d113
 
2d660f6
ea1d113
2d660f6
ea1d113
2d660f6
 
 
ea1d113
2d660f6
ea1d113
 
2d660f6
 
 
ea1d113
 
2d660f6
 
 
ea1d113
2d660f6
 
 
 
 
ea1d113
2d660f6
 
 
ea1d113
2d660f6
 
 
ea1d113
2d660f6
 
 
 
 
 
 
 
 
 
 
 
ea1d113
2d660f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1d113
 
 
2d660f6
ea1d113
 
2d660f6
 
 
 
 
 
 
ea1d113
 
2d660f6
ea1d113
2d660f6
 
 
 
ea1d113
2d660f6
 
 
ea1d113
2d660f6
ea1d113
 
2d660f6
ea1d113
 
2d660f6
ea1d113
2d660f6
 
ea1d113
2d660f6
 
ea1d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d660f6
 
 
 
 
 
 
 
ea1d113
9e669ec
ea1d113
9e669ec
ea1d113
 
9e669ec
ea1d113
 
9e669ec
 
ea1d113
 
 
 
 
 
9e669ec
 
ea1d113
 
9e669ec
 
ea1d113
 
 
 
9e669ec
 
ea1d113
 
 
9e669ec
 
 
ea1d113
 
 
9e669ec
ea1d113
 
 
9e669ec
 
ea1d113
 
 
 
 
9e669ec
 
ea1d113
 
 
 
 
 
 
 
 
9e669ec
 
 
ea1d113
2d660f6
ea1d113
 
023a063
ea1d113
 
 
 
 
 
 
 
 
 
9e669ec
2d660f6
 
 
 
ea1d113
 
2d660f6
ea1d113
 
 
 
 
 
 
2d660f6
ea1d113
 
 
 
 
2d660f6
 
 
ea1d113
2d660f6
 
 
ea1d113
 
 
 
9e669ec
2d660f6
ea1d113
 
 
 
 
 
 
2d660f6
ea1d113
 
 
 
 
 
2d660f6
ea1d113
 
 
 
 
 
 
 
 
 
 
 
 
9e669ec
 
ea1d113
 
 
 
 
 
 
9e669ec
ea1d113
 
 
 
 
 
 
 
 
 
 
 
 
023a063
ea1d113
 
 
 
 
 
 
 
 
 
 
 
 
 
9e669ec
ea1d113
9e669ec
 
 
 
 
 
2d660f6
9e669ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List


import torch
import os
from transformers import AutoTokenizer

import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image


def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
    """虚拟试衣主函数
    Args:
        dict: 输入图像字典,包含背景和图层信息
        garm_img: 服装图片
        garment_des: 服装描述文本
        is_checked: 是否启用自动检测模式
        is_checked_crop: 是否启用图像裁剪
        denoise_steps: 去噪步数
        seed: 随机种子
        category: 服装类别
    Returns:
        生成的试衣结果图像和灰度遮罩
    """
    # 1. 初始化和设备设置 - 使用GPU进行处理
    device = "cuda"
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    # 2. 图像预处理 - 调整服装和人物图像大小
    garm_img = garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")
    orig_size = human_img_orig.size  # 保存原始尺寸

    # 2.1 如果启用裁剪,按3:4比例裁剪人物图像
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))

    # 3. 生成遮罩
    if is_checked:
        # 3.1 使用自动检测模式
        # 使用OpenPose检测人体关键点
        keypoints = openpose_model(human_img.resize((384,512)))
        # 使用解析模型生成人体部位解析
        model_parse, _ = parsing_model(human_img.resize((384,512)))
        # 根据类别和关键点生成遮罩
        mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
        mask = mask.resize((768,1024))
    else:
        # 3.2 使用手动提供的遮罩
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
    
    # 3.3 生成灰度遮罩
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)

    # 4. 姿态处理
    # 4.1 调整图像方向并转换格式
    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    # 4.2 使用DensePose生成姿态信息
    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    pose_img = args.func(args,human_img_arg)
    pose_img = pose_img[:,:,::-1]
    pose_img = Image.fromarray(pose_img).resize((768,1024))

    # 5. AI生成过程
    with torch.no_grad():
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                # 5.1 生成正面提示词嵌入
                prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
                with torch.inference_mode():
                    # 编码提示词
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )

                    # 5.2 生成服装相关的提示词嵌入
                    prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )

                    # 5.3 准备输入张量
                    pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                    garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None

                    # 6. 使用Stable Diffusion XL管道生成图像
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device,torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength=1.0,
                        pose_img=pose_img.to(device,torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                        cloth=garm_tensor.to(device,torch.float16),
                        mask_image=mask,
                        image=human_img,
                        height=1024,
                        width=768,
                        ip_adapter_image=garm_img.resize((768,1024)),
                        guidance_scale=2.0,
                    )[0]

    # 7. 后处理 - 处理裁剪情况并返回结果
    if is_checked_crop:
        # 将生成的图片和mask调整到裁剪后的尺寸
        return images[0].resize(crop_size), mask_gray.resize(crop_size)
    else:
        # 直接将生成的图片和mask调整到原始尺寸
        return images[0].resize(orig_size), mask_gray.resize(orig_size)

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

# Take only odd number of examples (1, 3, 5) for better display
# Ensure we have at least 5 examples, if not available, use what we have
max_clothes = min(5, len(garm_list_path))
max_humans = min(5, len(human_list_path))

# Take odd numbers: 1, 3, 5
if max_clothes >= 5:
    garm_list_path = garm_list_path[:5]
elif max_clothes >= 3:
    garm_list_path = garm_list_path[:3]
else:
    garm_list_path = garm_list_path[:1]

if max_humans >= 5:
    human_list_path = human_list_path[:5]
elif max_humans >= 3:
    human_list_path = human_list_path[:3]
else:
    human_list_path = human_list_path[:1]

human_ex_list = []
for ex_human in human_list_path:
    ex_dict= {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)

# Custom CSS for Infomerica branding
custom_css = """
.infomerica-header {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 20px;
    border-radius: 10px;
    margin-bottom: 20px;
    text-align: center;
    color: white;
}

.infomerica-logo {
    max-height: 60px;
    margin-bottom: 10px;
}

.infomerica-title {
    font-size: 2.5em;
    font-weight: bold;
    margin: 10px 0;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}

.infomerica-subtitle {
    font-size: 1.2em;
    opacity: 0.9;
    margin-bottom: 10px;
}

.powered-by {
    font-size: 0.9em;
    opacity: 0.8;
    margin-top: 10px;
}

.footer-branding {
    text-align: center;
    margin-top: 30px;
    padding: 20px;
    background-color: #f8f9fa;
    border-radius: 10px;
    border: 1px solid #e9ecef;
}

.footer-links {
    display: flex;
    justify-content: center;
    gap: 20px;
    margin-top: 15px;
}

.footer-links a {
    color: #667eea;
    text-decoration: none;
    font-weight: 500;
}

.footer-links a:hover {
    color: #764ba2;
    text-decoration: underline;
}
"""

image_blocks = gr.Blocks(css=custom_css).queue()
with image_blocks as demo:
    
    # Infomerica Header with Logo and Branding
    gr.HTML("""
        <div class="infomerica-header">
            <img src="https://infomericainc.com/Content/images/logo.png" alt="Infomerica Logo" class="infomerica-logo">
            <h1 class="infomerica-title">AI Virtual Try-On</h1>
            <p class="infomerica-subtitle">Experience the future of fashion with our advanced AI technology</p>
            <p class="powered-by">Powered by Infomerica Inc.</p>
        </div>
        """)

    # Control Panel
    with gr.Column():
        with gr.Accordion(label="⚙️ Advanced Settings", open=False):
            with gr.Row():
                denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
                seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)

    # Main Interface
    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(
                sources='upload', 
                type="pil", 
                label='👤 Upload Your Photo', 
                interactive=True,
                height=400
            )
            with gr.Row():
                is_checked = gr.Checkbox(
                    label="Auto-Masking", 
                    info="✨ Use AI-generated mask (Takes 5 seconds)",
                    value=True
                )
            with gr.Row():
                category = gr.Dropdown(
                    choices=["upper_body", "lower_body", "dresses"],
                    label="👗 Clothing Category",
                    value="upper_body"
                )
            with gr.Row():
                is_checked_crop = gr.Checkbox(
                    label="Auto-Crop", 
                    info="📐 Use automatic cropping & resizing",
                    value=False
                )

            example = gr.Examples(
                inputs=imgs,
                examples_per_page=5,
                examples=human_ex_list,
                label="📸 Sample Models"
            )

        with gr.Column():
            garm_img = gr.Image(
                label="👚 Upload Garment", 
                sources='upload', 
                type="pil",
                height=400
            )
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(
                        label="✏️ Describe the Garment", 
                        placeholder="e.g., Blue denim jacket, Red summer dress, Black leather boots", 
                        show_label=True, 
                        elem_id="prompt"
                    )
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=5,
                examples=garm_list_path,
                label="👕 Sample Garments"
            )
            
        with gr.Column():
            masked_img = gr.Image(
                label="🎭 Processed Mask", 
                elem_id="masked-img",
                show_share_button=False,
                height=400
            )
            
        with gr.Column():
            image_out = gr.Image(
                label="✨ Final Result", 
                elem_id="output-img",
                show_share_button=False,
                height=400
            )

    # Transform Button - Placed below examples as requested
    with gr.Row():
        with gr.Column():
            try_button = gr.Button(value="🚀 Start Virtual Try-On", variant="primary", size="lg")

    # Footer with Infomerica Branding
    gr.HTML("""
        <div class="footer-branding">
            <h3>About Infomerica Inc.</h3>
            <p>Leading the way in AI innovation and digital transformation solutions.</p>
            <div class="footer-links">
                <a href="https://infomericainc.com" target="_blank">🌐 Visit Our Website</a>
                <a href="https://infomericainc.com/about" target="_blank">ℹ️ About Us</a>
                <a href="https://infomericainc.com/contact" target="_blank">📞 Contact</a>
                <a href="https://infomericainc.com/services" target="_blank">🛠️ Our Services</a>
            </div>
            <p style="margin-top: 15px; font-size: 0.9em; color: #6c757d;">
                © 2024 Infomerica Inc. All rights reserved. | Transforming businesses through innovative AI solutions.
            </p>
        </div>
        """)

    # Connect the try button to the function
    try_button.click(
        fn=start_tryon, 
        inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category], 
        outputs=[image_out, masked_img], 
        api_name='tryon'
    )

image_blocks.launch()