File size: 17,605 Bytes
2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 9e669ec ea1d113 2d660f6 ea1d113 023a063 ea1d113 9e669ec 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 9e669ec 2d660f6 ea1d113 2d660f6 ea1d113 2d660f6 ea1d113 9e669ec ea1d113 9e669ec ea1d113 023a063 ea1d113 9e669ec ea1d113 9e669ec 2d660f6 9e669ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
"""虚拟试衣主函数
Args:
dict: 输入图像字典,包含背景和图层信息
garm_img: 服装图片
garment_des: 服装描述文本
is_checked: 是否启用自动检测模式
is_checked_crop: 是否启用图像裁剪
denoise_steps: 去噪步数
seed: 随机种子
category: 服装类别
Returns:
生成的试衣结果图像和灰度遮罩
"""
# 1. 初始化和设备设置 - 使用GPU进行处理
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
# 2. 图像预处理 - 调整服装和人物图像大小
garm_img = garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
orig_size = human_img_orig.size # 保存原始尺寸
# 2.1 如果启用裁剪,按3:4比例裁剪人物图像
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
# 3. 生成遮罩
if is_checked:
# 3.1 使用自动检测模式
# 使用OpenPose检测人体关键点
keypoints = openpose_model(human_img.resize((384,512)))
# 使用解析模型生成人体部位解析
model_parse, _ = parsing_model(human_img.resize((384,512)))
# 根据类别和关键点生成遮罩
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768,1024))
else:
# 3.2 使用手动提供的遮罩
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# 3.3 生成灰度遮罩
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
# 4. 姿态处理
# 4.1 调整图像方向并转换格式
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
# 4.2 使用DensePose生成姿态信息
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
# 5. AI生成过程
with torch.no_grad():
with torch.cuda.amp.autocast():
with torch.no_grad():
# 5.1 生成正面提示词嵌入
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
with torch.inference_mode():
# 编码提示词
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
# 5.2 生成服装相关的提示词嵌入
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
# 5.3 准备输入张量
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
# 6. 使用Stable Diffusion XL管道生成图像
images = pipe(
prompt_embeds=prompt_embeds.to(device,torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_img.to(device,torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
cloth=garm_tensor.to(device,torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768,1024)),
guidance_scale=2.0,
)[0]
# 7. 后处理 - 处理裁剪情况并返回结果
if is_checked_crop:
# 将生成的图片和mask调整到裁剪后的尺寸
return images[0].resize(crop_size), mask_gray.resize(crop_size)
else:
# 直接将生成的图片和mask调整到原始尺寸
return images[0].resize(orig_size), mask_gray.resize(orig_size)
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
# Take only odd number of examples (1, 3, 5) for better display
# Ensure we have at least 5 examples, if not available, use what we have
max_clothes = min(5, len(garm_list_path))
max_humans = min(5, len(human_list_path))
# Take odd numbers: 1, 3, 5
if max_clothes >= 5:
garm_list_path = garm_list_path[:5]
elif max_clothes >= 3:
garm_list_path = garm_list_path[:3]
else:
garm_list_path = garm_list_path[:1]
if max_humans >= 5:
human_list_path = human_list_path[:5]
elif max_humans >= 3:
human_list_path = human_list_path[:3]
else:
human_list_path = human_list_path[:1]
human_ex_list = []
for ex_human in human_list_path:
ex_dict= {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
# Custom CSS for Infomerica branding
custom_css = """
.infomerica-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
}
.infomerica-logo {
max-height: 60px;
margin-bottom: 10px;
}
.infomerica-title {
font-size: 2.5em;
font-weight: bold;
margin: 10px 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.infomerica-subtitle {
font-size: 1.2em;
opacity: 0.9;
margin-bottom: 10px;
}
.powered-by {
font-size: 0.9em;
opacity: 0.8;
margin-top: 10px;
}
.footer-branding {
text-align: center;
margin-top: 30px;
padding: 20px;
background-color: #f8f9fa;
border-radius: 10px;
border: 1px solid #e9ecef;
}
.footer-links {
display: flex;
justify-content: center;
gap: 20px;
margin-top: 15px;
}
.footer-links a {
color: #667eea;
text-decoration: none;
font-weight: 500;
}
.footer-links a:hover {
color: #764ba2;
text-decoration: underline;
}
"""
image_blocks = gr.Blocks(css=custom_css).queue()
with image_blocks as demo:
# Infomerica Header with Logo and Branding
gr.HTML("""
<div class="infomerica-header">
<img src="https://infomericainc.com/Content/images/logo.png" alt="Infomerica Logo" class="infomerica-logo">
<h1 class="infomerica-title">AI Virtual Try-On</h1>
<p class="infomerica-subtitle">Experience the future of fashion with our advanced AI technology</p>
<p class="powered-by">Powered by Infomerica Inc.</p>
</div>
""")
# Control Panel
with gr.Column():
with gr.Accordion(label="⚙️ Advanced Settings", open=False):
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
# Main Interface
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(
sources='upload',
type="pil",
label='👤 Upload Your Photo',
interactive=True,
height=400
)
with gr.Row():
is_checked = gr.Checkbox(
label="Auto-Masking",
info="✨ Use AI-generated mask (Takes 5 seconds)",
value=True
)
with gr.Row():
category = gr.Dropdown(
choices=["upper_body", "lower_body", "dresses"],
label="👗 Clothing Category",
value="upper_body"
)
with gr.Row():
is_checked_crop = gr.Checkbox(
label="Auto-Crop",
info="📐 Use automatic cropping & resizing",
value=False
)
example = gr.Examples(
inputs=imgs,
examples_per_page=5,
examples=human_ex_list,
label="📸 Sample Models"
)
with gr.Column():
garm_img = gr.Image(
label="👚 Upload Garment",
sources='upload',
type="pil",
height=400
)
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(
label="✏️ Describe the Garment",
placeholder="e.g., Blue denim jacket, Red summer dress, Black leather boots",
show_label=True,
elem_id="prompt"
)
example = gr.Examples(
inputs=garm_img,
examples_per_page=5,
examples=garm_list_path,
label="👕 Sample Garments"
)
with gr.Column():
masked_img = gr.Image(
label="🎭 Processed Mask",
elem_id="masked-img",
show_share_button=False,
height=400
)
with gr.Column():
image_out = gr.Image(
label="✨ Final Result",
elem_id="output-img",
show_share_button=False,
height=400
)
# Transform Button - Placed below examples as requested
with gr.Row():
with gr.Column():
try_button = gr.Button(value="🚀 Start Virtual Try-On", variant="primary", size="lg")
# Footer with Infomerica Branding
gr.HTML("""
<div class="footer-branding">
<h3>About Infomerica Inc.</h3>
<p>Leading the way in AI innovation and digital transformation solutions.</p>
<div class="footer-links">
<a href="https://infomericainc.com" target="_blank">🌐 Visit Our Website</a>
<a href="https://infomericainc.com/about" target="_blank">ℹ️ About Us</a>
<a href="https://infomericainc.com/contact" target="_blank">📞 Contact</a>
<a href="https://infomericainc.com/services" target="_blank">🛠️ Our Services</a>
</div>
<p style="margin-top: 15px; font-size: 0.9em; color: #6c757d;">
© 2024 Infomerica Inc. All rights reserved. | Transforming businesses through innovative AI solutions.
</p>
</div>
""")
# Connect the try button to the function
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category],
outputs=[image_out, masked_img],
api_name='tryon'
)
image_blocks.launch() |