Spaces:
Paused
Paused
File size: 3,902 Bytes
38d88fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
## Training with Unpaired Data (CycleGAN-turbo)
Here, we show how to train a CycleGAN-turbo model using unpaired data.
We will use the [horse2zebra dataset](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/datasets.md) introduced by [CycleGAN](https://junyanz.github.io/CycleGAN/) as an example dataset.
### Step 1. Get the Dataset
- First download the horse2zebra dataset from [here](https://www.cs.cmu.edu/~img2img-turbo/data/my_horse2zebra.zip) using the command below.
```
bash scripts/download_horse2zebra.sh
```
- Our training scripts expect the dataset to be in the following format:
```
data
βββ dataset_name
β βββ train_A
β β βββ 000000.png
β β βββ 000001.png
β β βββ ...
β βββ train_B
β β βββ 000000.png
β β βββ 000001.png
β β βββ ...
β βββ fixed_prompt_a.txt
| βββ fixed_prompt_b.txt
|
| βββ test_A
β β βββ 000000.png
β β βββ 000001.png
β β βββ ...
β βββ test_B
β β βββ 000000.png
β β βββ 000001.png
β β βββ ...
```
- The `fixed_prompt_a.txt` and `fixed_prompt_b.txt` files contain the **fixed caption** used for the source and target domains respectively.
### Step 2. Train the Model
- Initialize the `accelerate` environment with the following command:
```
accelerate config
```
- Run the following command to train the model.
```
export NCCL_P2P_DISABLE=1
accelerate launch --main_process_port 29501 src/train_cyclegan_turbo.py \
--pretrained_model_name_or_path="stabilityai/sd-turbo" \
--output_dir="output/cyclegan_turbo/my_horse2zebra" \
--dataset_folder "data/my_horse2zebra" \
--train_img_prep "resize_286_randomcrop_256x256_hflip" --val_img_prep "no_resize" \
--learning_rate="1e-5" --max_train_steps=25000 \
--train_batch_size=1 --gradient_accumulation_steps=1 \
--report_to "wandb" --tracker_project_name "gparmar_unpaired_h2z_cycle_debug_v2" \
--enable_xformers_memory_efficient_attention --validation_steps 250 \
--lambda_gan 0.5 --lambda_idt 1 --lambda_cycle 1
```
- Additional optional flags:
- `--enable_xformers_memory_efficient_attention`: Enable memory-efficient attention in the model.
### Step 3. Monitor the training progress
- You can monitor the training progress using the [Weights & Biases](https://wandb.ai/site) dashboard.
- The training script will visualizing the training batch, the training losses, and validation set L2, LPIPS, and FID scores (if specified).
<div>
<p align="center">
<img src='../assets/examples/training_evaluation.png' align="center" width=800px>
</p>
</div>
- The model checkpoints will be saved in the `<output_dir>/checkpoints` directory.
### Step 4. Running Inference with the trained models
- You can run inference using the trained model using the following command:
```
python src/inference_unpaired.py --model_path "output/cyclegan_turbo/my_horse2zebra/checkpoints/model_1001.pkl" \
--input_image "data/my_horse2zebra/test_A/n02381460_20.jpg" \
--prompt "picture of a zebra" --direction "a2b" \
--output_dir "outputs" --image_prep "no_resize"
```
- The above command should generate the following output:
<table>
<tr>
<th>Model Input</th>
<th>Model Output</th>
</tr>
<tr>
<td><img src='../assets/examples/my_horse2zebra_input.jpg' width="200px"></td>
<td><img src='../assets/examples/my_horse2zebra_output.jpg' width="200px"></td>
</tr>
</table>
|