File size: 16,171 Bytes
38d88fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import gc
import lpips
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm

import diffusers
from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler

import wandb
from cleanfid.fid import get_folder_features, build_feature_extractor, fid_from_feats

from pix2pix_turbo import Pix2Pix_Turbo
from my_utils.training_utils import parse_args_paired_training, PairedDataset


def main(args):
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
    )

    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    if args.seed is not None:
        set_seed(args.seed)

    if accelerator.is_main_process:
        os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
        os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)

    if args.pretrained_model_name_or_path == "stabilityai/sd-turbo":
        net_pix2pix = Pix2Pix_Turbo(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae)
        net_pix2pix.set_train()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            net_pix2pix.unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available, please install it by running `pip install xformers`")

    if args.gradient_checkpointing:
        net_pix2pix.unet.enable_gradient_checkpointing()

    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.gan_disc_type == "vagan_clip":
        import vision_aided_loss
        net_disc = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
    else:
        raise NotImplementedError(f"Discriminator type {args.gan_disc_type} not implemented")

    net_disc = net_disc.cuda()
    net_disc.requires_grad_(True)
    net_disc.cv_ensemble.requires_grad_(False)
    net_disc.train()

    net_lpips = lpips.LPIPS(net='vgg').cuda()
    net_clip, _ = clip.load("ViT-B/32", device="cuda")
    net_clip.requires_grad_(False)
    net_clip.eval()

    net_lpips.requires_grad_(False)

    # make the optimizer
    layers_to_opt = []
    for n, _p in net_pix2pix.unet.named_parameters():
        if "lora" in n:
            assert _p.requires_grad
            layers_to_opt.append(_p)
    layers_to_opt += list(net_pix2pix.unet.conv_in.parameters())
    for n, _p in net_pix2pix.vae.named_parameters():
        if "lora" in n and "vae_skip" in n:
            assert _p.requires_grad
            layers_to_opt.append(_p)
    layers_to_opt = layers_to_opt + list(net_pix2pix.vae.decoder.skip_conv_1.parameters()) + \
        list(net_pix2pix.vae.decoder.skip_conv_2.parameters()) + \
        list(net_pix2pix.vae.decoder.skip_conv_3.parameters()) + \
        list(net_pix2pix.vae.decoder.skip_conv_4.parameters())

    optimizer = torch.optim.AdamW(layers_to_opt, lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,)
    lr_scheduler = get_scheduler(args.lr_scheduler, optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles, power=args.lr_power,)

    optimizer_disc = torch.optim.AdamW(net_disc.parameters(), lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,)
    lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc,
            num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
            num_training_steps=args.max_train_steps * accelerator.num_processes,
            num_cycles=args.lr_num_cycles, power=args.lr_power)

    dataset_train = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_image_prep, split="train", tokenizer=net_pix2pix.tokenizer)
    dl_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers)
    dataset_val = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.test_image_prep, split="test", tokenizer=net_pix2pix.tokenizer)
    dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)

    # Prepare everything with our `accelerator`.
    net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc = accelerator.prepare(
        net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc
    )
    net_clip, net_lpips = accelerator.prepare(net_clip, net_lpips)
    # renorm with image net statistics
    t_clip_renorm = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move al networksr to device and cast to weight_dtype
    net_pix2pix.to(accelerator.device, dtype=weight_dtype)
    net_disc.to(accelerator.device, dtype=weight_dtype)
    net_lpips.to(accelerator.device, dtype=weight_dtype)
    net_clip.to(accelerator.device, dtype=weight_dtype)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))
        accelerator.init_trackers(args.tracker_project_name, config=tracker_config)

    progress_bar = tqdm(range(0, args.max_train_steps), initial=0, desc="Steps",
        disable=not accelerator.is_local_main_process,)

    # turn off eff. attn for the discriminator
    for name, module in net_disc.named_modules():
        if "attn" in name:
            module.fused_attn = False

    # compute the reference stats for FID tracking
    if accelerator.is_main_process and args.track_val_fid:
        feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False)

        def fn_transform(x):
            x_pil = Image.fromarray(x)
            out_pil = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.LANCZOS)(x_pil)
            return np.array(out_pil)

        ref_stats = get_folder_features(os.path.join(args.dataset_folder, "test_B"), model=feat_model, num_workers=0, num=None,
                shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)

    # start the training loop
    global_step = 0
    for epoch in range(0, args.num_training_epochs):
        for step, batch in enumerate(dl_train):
            l_acc = [net_pix2pix, net_disc]
            with accelerator.accumulate(*l_acc):
                x_src = batch["conditioning_pixel_values"]
                x_tgt = batch["output_pixel_values"]
                B, C, H, W = x_src.shape
                # forward pass
                x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
                # Reconstruction loss
                loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean") * args.lambda_l2
                loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean() * args.lambda_lpips
                loss = loss_l2 + loss_lpips
                # CLIP similarity loss
                if args.lambda_clipsim > 0:
                    x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
                    x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
                    caption_tokens = clip.tokenize(batch["caption"], truncate=True).to(x_tgt_pred.device)
                    clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
                    loss_clipsim = (1 - clipsim.mean() / 100)
                    loss += loss_clipsim * args.lambda_clipsim
                accelerator.backward(loss, retain_graph=False)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)

                """

                Generator loss: fool the discriminator

                """
                x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
                lossG = net_disc(x_tgt_pred, for_G=True).mean() * args.lambda_gan
                accelerator.backward(lossG)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)

                """

                Discriminator loss: fake image vs real image

                """
                # real image
                lossD_real = net_disc(x_tgt.detach(), for_real=True).mean() * args.lambda_gan
                accelerator.backward(lossD_real.mean())
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
                optimizer_disc.step()
                lr_scheduler_disc.step()
                optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
                # fake image
                lossD_fake = net_disc(x_tgt_pred.detach(), for_real=False).mean() * args.lambda_gan
                accelerator.backward(lossD_fake.mean())
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
                optimizer_disc.step()
                optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
                lossD = lossD_real + lossD_fake

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    logs = {}
                    # log all the losses
                    logs["lossG"] = lossG.detach().item()
                    logs["lossD"] = lossD.detach().item()
                    logs["loss_l2"] = loss_l2.detach().item()
                    logs["loss_lpips"] = loss_lpips.detach().item()
                    if args.lambda_clipsim > 0:
                        logs["loss_clipsim"] = loss_clipsim.detach().item()
                    progress_bar.set_postfix(**logs)

                    # viz some images
                    if global_step % args.viz_freq == 1:
                        log_dict = {
                            "train/source": [wandb.Image(x_src[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
                            "train/target": [wandb.Image(x_tgt[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
                            "train/model_output": [wandb.Image(x_tgt_pred[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
                        }
                        for k in log_dict:
                            logs[k] = log_dict[k]

                    # checkpoint the model
                    if global_step % args.checkpointing_steps == 1:
                        outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl")
                        accelerator.unwrap_model(net_pix2pix).save_model(outf)

                    # compute validation set FID, L2, LPIPS, CLIP-SIM
                    if global_step % args.eval_freq == 1:
                        l_l2, l_lpips, l_clipsim = [], [], []
                        if args.track_val_fid:
                            os.makedirs(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), exist_ok=True)
                        for step, batch_val in enumerate(dl_val):
                            if step >= args.num_samples_eval:
                                break
                            x_src = batch_val["conditioning_pixel_values"].cuda()
                            x_tgt = batch_val["output_pixel_values"].cuda()
                            B, C, H, W = x_src.shape
                            assert B == 1, "Use batch size 1 for eval."
                            with torch.no_grad():
                                # forward pass
                                x_tgt_pred = accelerator.unwrap_model(net_pix2pix)(x_src, prompt_tokens=batch_val["input_ids"].cuda(), deterministic=True)
                                # compute the reconstruction losses
                                loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean")
                                loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean()
                                # compute clip similarity loss
                                x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
                                x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
                                caption_tokens = clip.tokenize(batch_val["caption"], truncate=True).to(x_tgt_pred.device)
                                clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
                                clipsim = clipsim.mean()

                                l_l2.append(loss_l2.item())
                                l_lpips.append(loss_lpips.item())
                                l_clipsim.append(clipsim.item())
                            # save output images to file for FID evaluation
                            if args.track_val_fid:
                                output_pil = transforms.ToPILImage()(x_tgt_pred[0].cpu() * 0.5 + 0.5)
                                outf = os.path.join(args.output_dir, "eval", f"fid_{global_step}", f"val_{step}.png")
                                output_pil.save(outf)
                        if args.track_val_fid:
                            curr_stats = get_folder_features(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), model=feat_model, num_workers=0, num=None,
                                    shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                                    mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)
                            fid_score = fid_from_feats(ref_stats, curr_stats)
                            logs["val/clean_fid"] = fid_score
                        logs["val/l2"] = np.mean(l_l2)
                        logs["val/lpips"] = np.mean(l_lpips)
                        logs["val/clipsim"] = np.mean(l_clipsim)
                        gc.collect()
                        torch.cuda.empty_cache()
                    accelerator.log(logs, step=global_step)


if __name__ == "__main__":
    args = parse_args_paired_training()
    main(args)