Spaces:
Paused
Paused
File size: 16,171 Bytes
38d88fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import gc
import lpips
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
import diffusers
from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler
import wandb
from cleanfid.fid import get_folder_features, build_feature_extractor, fid_from_feats
from pix2pix_turbo import Pix2Pix_Turbo
from my_utils.training_utils import parse_args_paired_training, PairedDataset
def main(args):
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)
if args.pretrained_model_name_or_path == "stabilityai/sd-turbo":
net_pix2pix = Pix2Pix_Turbo(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae)
net_pix2pix.set_train()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
net_pix2pix.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available, please install it by running `pip install xformers`")
if args.gradient_checkpointing:
net_pix2pix.unet.enable_gradient_checkpointing()
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.gan_disc_type == "vagan_clip":
import vision_aided_loss
net_disc = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
else:
raise NotImplementedError(f"Discriminator type {args.gan_disc_type} not implemented")
net_disc = net_disc.cuda()
net_disc.requires_grad_(True)
net_disc.cv_ensemble.requires_grad_(False)
net_disc.train()
net_lpips = lpips.LPIPS(net='vgg').cuda()
net_clip, _ = clip.load("ViT-B/32", device="cuda")
net_clip.requires_grad_(False)
net_clip.eval()
net_lpips.requires_grad_(False)
# make the optimizer
layers_to_opt = []
for n, _p in net_pix2pix.unet.named_parameters():
if "lora" in n:
assert _p.requires_grad
layers_to_opt.append(_p)
layers_to_opt += list(net_pix2pix.unet.conv_in.parameters())
for n, _p in net_pix2pix.vae.named_parameters():
if "lora" in n and "vae_skip" in n:
assert _p.requires_grad
layers_to_opt.append(_p)
layers_to_opt = layers_to_opt + list(net_pix2pix.vae.decoder.skip_conv_1.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_2.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_3.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_4.parameters())
optimizer = torch.optim.AdamW(layers_to_opt, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,)
lr_scheduler = get_scheduler(args.lr_scheduler, optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power,)
optimizer_disc = torch.optim.AdamW(net_disc.parameters(), lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,)
lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power)
dataset_train = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_image_prep, split="train", tokenizer=net_pix2pix.tokenizer)
dl_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers)
dataset_val = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.test_image_prep, split="test", tokenizer=net_pix2pix.tokenizer)
dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)
# Prepare everything with our `accelerator`.
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc = accelerator.prepare(
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc
)
net_clip, net_lpips = accelerator.prepare(net_clip, net_lpips)
# renorm with image net statistics
t_clip_renorm = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move al networksr to device and cast to weight_dtype
net_pix2pix.to(accelerator.device, dtype=weight_dtype)
net_disc.to(accelerator.device, dtype=weight_dtype)
net_lpips.to(accelerator.device, dtype=weight_dtype)
net_clip.to(accelerator.device, dtype=weight_dtype)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
progress_bar = tqdm(range(0, args.max_train_steps), initial=0, desc="Steps",
disable=not accelerator.is_local_main_process,)
# turn off eff. attn for the discriminator
for name, module in net_disc.named_modules():
if "attn" in name:
module.fused_attn = False
# compute the reference stats for FID tracking
if accelerator.is_main_process and args.track_val_fid:
feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False)
def fn_transform(x):
x_pil = Image.fromarray(x)
out_pil = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.LANCZOS)(x_pil)
return np.array(out_pil)
ref_stats = get_folder_features(os.path.join(args.dataset_folder, "test_B"), model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)
# start the training loop
global_step = 0
for epoch in range(0, args.num_training_epochs):
for step, batch in enumerate(dl_train):
l_acc = [net_pix2pix, net_disc]
with accelerator.accumulate(*l_acc):
x_src = batch["conditioning_pixel_values"]
x_tgt = batch["output_pixel_values"]
B, C, H, W = x_src.shape
# forward pass
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
# Reconstruction loss
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean") * args.lambda_l2
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean() * args.lambda_lpips
loss = loss_l2 + loss_lpips
# CLIP similarity loss
if args.lambda_clipsim > 0:
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
caption_tokens = clip.tokenize(batch["caption"], truncate=True).to(x_tgt_pred.device)
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
loss_clipsim = (1 - clipsim.mean() / 100)
loss += loss_clipsim * args.lambda_clipsim
accelerator.backward(loss, retain_graph=False)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
"""
Generator loss: fool the discriminator
"""
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
lossG = net_disc(x_tgt_pred, for_G=True).mean() * args.lambda_gan
accelerator.backward(lossG)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
"""
Discriminator loss: fake image vs real image
"""
# real image
lossD_real = net_disc(x_tgt.detach(), for_real=True).mean() * args.lambda_gan
accelerator.backward(lossD_real.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
optimizer_disc.step()
lr_scheduler_disc.step()
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
# fake image
lossD_fake = net_disc(x_tgt_pred.detach(), for_real=False).mean() * args.lambda_gan
accelerator.backward(lossD_fake.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
optimizer_disc.step()
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
lossD = lossD_real + lossD_fake
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
logs = {}
# log all the losses
logs["lossG"] = lossG.detach().item()
logs["lossD"] = lossD.detach().item()
logs["loss_l2"] = loss_l2.detach().item()
logs["loss_lpips"] = loss_lpips.detach().item()
if args.lambda_clipsim > 0:
logs["loss_clipsim"] = loss_clipsim.detach().item()
progress_bar.set_postfix(**logs)
# viz some images
if global_step % args.viz_freq == 1:
log_dict = {
"train/source": [wandb.Image(x_src[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
"train/target": [wandb.Image(x_tgt[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
"train/model_output": [wandb.Image(x_tgt_pred[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
}
for k in log_dict:
logs[k] = log_dict[k]
# checkpoint the model
if global_step % args.checkpointing_steps == 1:
outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl")
accelerator.unwrap_model(net_pix2pix).save_model(outf)
# compute validation set FID, L2, LPIPS, CLIP-SIM
if global_step % args.eval_freq == 1:
l_l2, l_lpips, l_clipsim = [], [], []
if args.track_val_fid:
os.makedirs(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), exist_ok=True)
for step, batch_val in enumerate(dl_val):
if step >= args.num_samples_eval:
break
x_src = batch_val["conditioning_pixel_values"].cuda()
x_tgt = batch_val["output_pixel_values"].cuda()
B, C, H, W = x_src.shape
assert B == 1, "Use batch size 1 for eval."
with torch.no_grad():
# forward pass
x_tgt_pred = accelerator.unwrap_model(net_pix2pix)(x_src, prompt_tokens=batch_val["input_ids"].cuda(), deterministic=True)
# compute the reconstruction losses
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean")
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean()
# compute clip similarity loss
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
caption_tokens = clip.tokenize(batch_val["caption"], truncate=True).to(x_tgt_pred.device)
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
clipsim = clipsim.mean()
l_l2.append(loss_l2.item())
l_lpips.append(loss_lpips.item())
l_clipsim.append(clipsim.item())
# save output images to file for FID evaluation
if args.track_val_fid:
output_pil = transforms.ToPILImage()(x_tgt_pred[0].cpu() * 0.5 + 0.5)
outf = os.path.join(args.output_dir, "eval", f"fid_{global_step}", f"val_{step}.png")
output_pil.save(outf)
if args.track_val_fid:
curr_stats = get_folder_features(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)
fid_score = fid_from_feats(ref_stats, curr_stats)
logs["val/clean_fid"] = fid_score
logs["val/l2"] = np.mean(l_l2)
logs["val/lpips"] = np.mean(l_lpips)
logs["val/clipsim"] = np.mean(l_clipsim)
gc.collect()
torch.cuda.empty_cache()
accelerator.log(logs, step=global_step)
if __name__ == "__main__":
args = parse_args_paired_training()
main(args)
|