Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,421 Bytes
b24a39c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
import base64
import json
import logging
import os
import subprocess
import sys
import threading
import time
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Optional
import gradio as gr
import numpy as np
import open3d as o3d
import plotly.graph_objects as go
import requests
from fastapi import APIRouter, FastAPI, HTTPException, status, BackgroundTasks, Response
from pydantic import BaseModel
import asyncio
import uvicorn
from collections import defaultdict
BACKEND_URL = os.getenv("BACKEND_URL", "http://localhost:8001") # fastapi server
API_ENDPOINTS = {
"submit_task": f"{BACKEND_URL}/predict/video",
"query_status": f"{BACKEND_URL}/predict/task",
"get_result": f"{BACKEND_URL}/predict"
}
SCENE_CONFIGS = {
"scene_1": {
"description": "Modern Apartment",
"name": "17DRP5sb8fy",
"glb_path": "scene_assets/scene1_no_ceiling.glb" # PLY file path
},
"scene_2": {
"description": "Office Building",
"name": "r1Q1Z4BcV1o",
"glb_path": "scene_assets/scene2_no_ceiling.glb"
},
"scene_3": {
"description": "University Campus",
"name": "dhjEzFoUFzH",
"glb_path": "scene_assets/scene3_no_ceiling.glb"
},
}
EPISODE_CONFIGS = {
"episode_1": {
"description": "1",
},
"episode_2": {
"description": "2",
},
"episode_3": {
"description": "3",
},
"episode_4": {
"description": "4",
}
}
MODEL_CHOICES = []
###############################################################################
SESSION_TASKS = {}
IP_REQUEST_RECORDS = defaultdict(list)
IP_LIMIT = 5
def is_request_allowed(ip: str) -> bool:
now = datetime.now()
IP_REQUEST_RECORDS[ip] = [t for t in IP_REQUEST_RECORDS[ip] if now - t < timedelta(minutes=1)]
if len(IP_REQUEST_RECORDS[ip]) < IP_LIMIT:
IP_REQUEST_RECORDS[ip].append(now)
return True
return False
###############################################################################
# Log directory path
LOG_DIR = "~/logs"
os.makedirs(LOG_DIR, exist_ok=True)
ACCESS_LOG = os.path.join(LOG_DIR, "access.log")
SUBMISSION_LOG = os.path.join(LOG_DIR, "submissions.log")
def log_access(user_ip: str = None, user_agent: str = None):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = {
"timestamp": timestamp,
"type": "access",
"user_ip": user_ip or "unknown",
"user_agent": user_agent or "unknown"
}
with open(ACCESS_LOG, "a") as f:
f.write(json.dumps(log_entry) + "\n")
def log_submission(scene: str, prompt: str, model: str, user: str = "anonymous", res: str = "unknown"):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = {
"timestamp": timestamp,
"type": "submission",
"user": user,
"scene": scene,
"prompt": prompt,
"model": model,
#"max_step": str(max_step),
"res": res
}
with open(SUBMISSION_LOG, "a") as f:
f.write(json.dumps(log_entry) + "\n")
def read_logs(log_type: str = "all", max_entries: int = 50) -> list:
logs = []
if log_type in ["all", "access"]:
try:
with open(ACCESS_LOG, "r") as f:
for line in f:
logs.append(json.loads(line.strip()))
except FileNotFoundError:
pass
if log_type in ["all", "submission"]:
try:
with open(SUBMISSION_LOG, "r") as f:
for line in f:
logs.append(json.loads(line.strip()))
except FileNotFoundError:
pass
# Sorted by timestemp
logs.sort(key=lambda x: x["timestamp"], reverse=True)
return logs[:max_entries]
def format_logs_for_display(logs: list) -> str:
if not logs:
return "No log record"
markdown = "### System Access Log\n\n"
markdown += "| Time | Type | User/IP | Details |\n"
markdown += "|------|------|---------|----------|\n"
for log in logs:
timestamp = log.get("timestamp", "unknown")
log_type = "Access" if log.get("type") == "access" else "Submission"
if log_type == "Access":
user = log.get("user_ip", "unknown")
details = f"User-Agent: {log.get('user_agent', 'unknown')}"
else:
user = log.get("user", "anonymous")
result = log.get('res', 'unknown')
if result != "success":
if len(result) > 40: # Adjust this threshold as needed
result = f"{result[:20]}...{result[-20:]}"
details = f"Scene: {log.get('scene', 'unknown')}, Prompt: {log.get('prompt', '')}, Model: {log.get('model', 'unknown')}, result: {result}"
markdown += f"| {timestamp} | {log_type} | {user} | {details} |\n"
return markdown
def submit_to_backend(
scene: str,
prompt: str,
episode: str,
user: str = "Gradio-user",
) -> dict:
job_id = str(uuid.uuid4())
scene_index = scene.split("_")[-1]
episode_index = episode.split("_")[-1]
data = {
"task_type": "vln_eval", # Identify task type
"instruction": prompt,
"scene_index": scene_index,
"episode_index": episode_index,
}
payload = {
"user": user,
"task": "robot_navigation",
"job_id": job_id,
"data": json.dumps(data)
}
try:
headers = {"Content-Type": "application/json"}
response = requests.post(
API_ENDPOINTS["submit_task"],
json=payload,
headers=headers,
timeout=600
)
return response.json()
except Exception as e:
return {"status": "error", "message": str(e)}
def get_task_status(task_id: str) -> dict:
try:
response = requests.get(f"{API_ENDPOINTS['query_status']}/{task_id}", timeout=600)
try:
return response.json()
except json.JSONDecodeError:
return {"status": "error", "message": response.text}
except Exception as e:
return {"status": "error", "message": str(e)}
def get_task_result(task_id: str) -> Optional[dict]:
try:
response = requests.get(
f"{API_ENDPOINTS['get_result']}/{task_id}",
timeout=5
)
return response.json()
except Exception as e:
print(f"Error fetching result: {e}")
return None
def run_simulation(
scene: str,
prompt: str,
episode: str,
history: list,
request: gr.Request
) -> dict:
model = "InternNav-VLA"
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
scene_desc = SCENE_CONFIGS.get(scene, {}).get("description", scene)
user_ip = request.client.host if request else "unknown"
session_id = request.session_hash
if not is_request_allowed(user_ip):
log_submission(scene, prompt, model, user_ip, "IP blocked temporarily")
raise gr.Error("Too many requests from this IP. Please wait and try again one minute later.")
submission_result = submit_to_backend(scene, prompt, episode)
print("submission_result: ", submission_result)
if submission_result.get("status") != "pending":
log_submission(scene, prompt, model, user_ip, "Submission failed")
raise gr.Error(f"Submission failed: {submission_result.get('message', 'unknown issue')}")
try:
task_id = submission_result["task_id"]
SESSION_TASKS[session_id] = task_id
gr.Info(f"Simulation started, task_id: {task_id}")
time.sleep(5)
# Get Task Status
status = get_task_status(task_id)
print("first status: ", status)
result_folder = status.get("result", "")
except Exception as e:
log_submission(scene, prompt, model, user_ip, str(e))
raise gr.Error(f"error occurred when parsing submission result from backend: {str(e)}")
while True:
status = get_task_status(task_id)
if status.get("status") == "completed":
break
elif status.get("status") == "failed":
break
time.sleep(1)
if status.get("status") == "completed":
import base64
video_bytes = base64.b64decode(status.get("video"))
receive_time = time.time()
with open(f"received_video_{receive_time}.mp4", "wb") as f:
f.write(video_bytes)
video_path = f"received_video_{receive_time}.mp4"
new_entry = {
"timestamp": timestamp,
"scene": scene,
"model": model,
"prompt": prompt,
"video_path": video_path
}
updated_history = history + [new_entry]
if len(updated_history) > 10:
updated_history = updated_history[:10]
print("updated_history:", updated_history)
log_submission(scene, prompt, model, user_ip, "success")
gr.Info("Simulation completed successfully!")
yield video_path, updated_history
elif status.get("status") == "failed":
log_submission(scene, prompt, model, user_ip, status.get('result', 'backend error'))
raise gr.Error(f"task execution fails: {status.get('result', 'backend error')}")
yield None, history
elif status.get("status") == "terminated":
log_submission(scene, prompt, model, user_ip, "terminated")
video_path = os.path.join(result_folder, "output.mp4")
if os.path.exists(video_path):
return f" task {task_id} terminated with some results", video_path, history
else:
return f" task {task_id} terminated without any results", None, history
else:
log_submission(scene, prompt, model, user_ip, "missing task's status from backend")
yield None, history
###################################################################################################################
def update_history_display(history: list) -> list:
print("update_history_display")
updates = []
for i in range(10):
if i < len(history):
entry = history[i]
updates.extend([
gr.update(visible=True),
gr.update(visible=True, label=f"Simulation {i+1} scene: {entry['scene']}, prompt: {entry['prompt']}", open=False),
gr.update(value=entry['video_path'], visible=True),
gr.update(value=f"{entry['timestamp']}")
])
print(f'update video')
print(entry['video_path'])
else:
updates.extend([
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=None, visible=False),
gr.update(value="")
])
print("update_history_display end!!")
return updates
def update_scene_display(scene: str):
print(f"update_scene_display {scene}")
config = SCENE_CONFIGS.get(scene, {})
glb_path = config.get("glb_path", "")
# Validate if file path exists
if not os.path.exists(glb_path):
return None, None
return None, glb_path
def update_episode_display(scene: str, episode: str):
print(f"update_episode_display {scene} {episode}")
config = SCENE_CONFIGS.get(scene, {})
scene_name = config.get("name", "")
episode_id = int(episode[-1])
image_path = os.path.join("scene_assets", f"{scene_name}_{episode_id-1}.jpg")
print(f"image_path {image_path}")
# vaild if file path exists
if not os.path.exists(image_path):
return None
return image_path
def update_log_display():
logs = read_logs()
return format_logs_for_display(logs)
##############################################################################
def cleanup_session(request: gr.Request):
session_id = request.session_hash
task_id = SESSION_TASKS.pop(session_id, None)
if task_id:
try:
requests.post(f"{BACKEND_URL}/predict/terminate/{task_id}", timeout=3)
print(f"Task Terminated: {task_id}")
except Exception as e:
print(f"Task Termination Failed: {task_id}: {e}")
###############################################################################
custom_css = """
#simulation-panel {
border-radius: 8px;
padding: 20px;
background: #f9f9f9;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
#result-panel {
border-radius: 8px;
padding: 20px;
background: #f0f8ff;
}
.dark #simulation-panel { background: #2a2a2a; }
.dark #result-panel { background: #1a2a3a; }
.history-container {
max-height: 600px;
overflow-y: auto;
margin-top: 20px;
}
.history-accordion {
margin-bottom: 10px;
}
.scene-preview {
height: 400px;
border: 1px solid #ddd;
border-radius: 8px;
overflow: hidden;
}
"""
with gr.Blocks(title="Robot Navigation Inference", css=custom_css) as demo:
gr.Markdown("""
# 🧭 Habitat Robot Navigation Demo
### Simulation Test Based on Habitat Framework
""")
history_state = gr.State([])
with gr.Row():
with gr.Column(elem_id="simulation-panel"):
gr.Markdown("### Simulation Task Configuration")
with gr.Row():
scene_dropdown = gr.Dropdown(
label="Select Scene",
choices=list(SCENE_CONFIGS.keys()),
value="scene_1",
interactive=True,
)
episode_dropdown = gr.Dropdown(
label="Select Start Position",
choices=list(EPISODE_CONFIGS.keys()),
value="episode_1",
interactive=True,
)
with gr.Row():
scene_preview = gr.Model3D(elem_classes=["scene-preview"],
camera_position=(90.0, 120, 20000.0),
#display_mode="solid"
)
fps_preview = gr.Image(label="FPS Preview")
scene_description = gr.Markdown("### Scene preview")
prompt_input = gr.Textbox(
label="Navigation Instruction",
value="Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug.",
placeholder="e.g.: 'Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug.'",
lines=2,
max_lines=4
)
scene_dropdown.change(
update_scene_display,
inputs=scene_dropdown,
outputs=[scene_description, scene_preview]
).then(
update_episode_display,
inputs=[scene_dropdown, episode_dropdown],
outputs=[fps_preview]
)
episode_dropdown.change(
update_episode_display,
inputs=[scene_dropdown, episode_dropdown],
outputs=[fps_preview]
)
submit_btn = gr.Button("Start Navigation Simulation", variant="primary")
with gr.Column(elem_id="result-panel"):
gr.Markdown("### Latest Simulation Result")
# Video Output
video_output = gr.Video(
label="Live",
interactive=False,
format="mp4",
autoplay=True,
# streaming=True
)
with gr.Column() as history_container:
gr.Markdown("### History")
gr.Markdown("#### History will be reset after refresh")
history_slots = []
for i in range(10):
with gr.Column(visible=False) as slot:
with gr.Accordion(visible=False, open=False) as accordion:
video = gr.Video(interactive=False)
detail_md = gr.Markdown()
history_slots.append((slot, accordion, video, detail_md))
with gr.Accordion("View System Log (DEV ONLY)", open=False):
logs_display = gr.Markdown()
refresh_logs_btn = gr.Button("Refresh Log", variant="secondary")
refresh_logs_btn.click(
update_log_display,
outputs=logs_display
)
gr.Examples(
examples=[
["scene_1", "Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug.", "episode_0"],
["scene_2", "Go from reception to conference room passing the water cooler.", "episode_1"],
["scene_3", "From the classroom, go to the library via the main hall.", "episode_2"],
["scene_4", "From emergency room to pharmacy passing nurse station.", "episode_3"]
],
inputs=[scene_dropdown, prompt_input, episode_dropdown],
label="Navigation Task Example"
)
submit_btn.click(
fn=run_simulation,
inputs=[scene_dropdown, prompt_input, episode_dropdown, history_state],
outputs=[video_output, history_state],
queue=True,
api_name="run_simulation"
).then(
fn=update_history_display,
inputs=history_state,
outputs=[comp for slot in history_slots for comp in slot],
queue=True
).then(
fn=update_log_display,
outputs=logs_display,
)
demo.load(
fn=lambda: update_scene_display("scene_1"),
outputs=[scene_description, scene_preview]
).then(
fn=update_log_display,
outputs=logs_display
)
demo.load(
fn=lambda: update_episode_display("scene_1", "episode_1"),
outputs=[fps_preview]
)
def record_access(request: gr.Request):
user_ip = request.client.host if request else "unknown"
user_agent = request.headers.get("user-agent", "unknown")
log_access(user_ip, user_agent)
return update_log_display()
demo.load(
fn=record_access,
inputs=None,
outputs=logs_display,
queue=False
)
demo.queue(default_concurrency_limit=8)
demo.unload(fn=cleanup_session)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=5750, debug=True, share = True, allowed_paths=["/mnt"])
|