jandan138's picture
add debug info
3e8a4e8
# main.py
# 主入口文件,负责启动 Gradio UI
import gradio as gr
from config import SCENE_CONFIGS, MODEL_CHOICES, MODE_CHOICES
from backend_api import submit_to_backend, get_task_status, get_task_result
from logging_utils import log_access, log_submission, is_request_allowed
from simulation import stream_simulation_results, convert_to_h264, create_final_video_from_oss_images
from ui_components import update_history_display, update_scene_display, update_log_display, get_scene_instruction
from oss_utils import download_oss_file, get_user_tmp_dir, cleanup_user_tmp_dir, oss_file_exists, clean_oss_result_path
import os
from datetime import datetime
SESSION_TASKS = {}
def run_simulation(scene, model, mode, prompt, history, request: gr.Request):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
scene_desc = SCENE_CONFIGS.get(scene, {}).get("description", scene)
user_ip = request.client.host if request else "unknown"
session_id = request.session_hash
if not is_request_allowed(user_ip):
log_submission(scene, prompt, model, user_ip, "IP blocked temporarily")
raise gr.Error("Too many requests from this IP. Please wait and try again one minute later.")
# 提交任务到后端
submission_result = submit_to_backend(scene, prompt, mode, model, user_ip)
if submission_result.get("status") != "pending":
log_submission(scene, prompt, model, user_ip, "Submission failed")
raise gr.Error(f"Submission failed: {submission_result.get('message', 'unknown issue')}")
try:
task_id = submission_result["task_id"]
SESSION_TASKS[session_id] = task_id
gr.Info(f"Simulation started, task_id: {task_id}")
import time
time.sleep(5)
status = get_task_status(task_id)
# OSS上的结果文件夹路径,不再检查本地路径是否存在
result_folder = clean_oss_result_path(status.get("result", f"gradio_demo/tasks/{task_id}"), task_id)
except Exception as e:
log_submission(scene, prompt, model, user_ip, str(e))
raise gr.Error(f"error occurred when parsing submission result from backend: {str(e)}")
# 流式输出视频片段(从OSS读取)
try:
for video_path in stream_simulation_results(result_folder, task_id, request):
if video_path:
yield video_path, history
except Exception as e:
log_submission(scene, prompt, model, user_ip, str(e))
raise gr.Error(f"流式输出过程中出错: {str(e)}")
# 获取最终任务状态
status = get_task_status(task_id)
if status.get("status") == "completed":
try:
# 从OSS上的所有图片拼接成最终视频(6帧每秒)
gr.Info("Creating final video from all OSS images...")
video_path = create_final_video_from_oss_images(result_folder, task_id, request, fps=6)
gr.Info(f"Final video created successfully with 6 fps!")
except Exception as e:
print(f"Error creating final video from OSS images: {e}")
log_submission(scene, prompt, model, user_ip, f"Final video creation failed: {str(e)}")
video_path = None
new_entry = {
"timestamp": timestamp,
"scene": scene,
"model": model,
"mode": mode,
"prompt": prompt,
"video_path": video_path
}
updated_history = history + [new_entry]
if len(updated_history) > 10:
updated_history = updated_history[:10]
log_submission(scene, prompt, model, user_ip, "success")
gr.Info("Simulation completed successfully!")
yield None, updated_history
elif status.get("status") == "failed":
log_submission(scene, prompt, model, user_ip, status.get('result', 'backend error'))
raise gr.Error(f"任务执行失败: {status.get('result', 'backend 未知错误')}")
yield None, history
elif status.get("status") == "terminated":
log_submission(scene, prompt, model, user_ip, "terminated")
# 对于终止的任务,不再检查本地文件
yield None, history
else:
log_submission(scene, prompt, model, user_ip, "missing task's status from backend")
raise gr.Error("missing task's status from backend")
yield None, history
def cleanup_session(request: gr.Request):
session_id = request.session_hash
task_id = SESSION_TASKS.pop(session_id, None)
from config import BACKEND_URL
import requests
if task_id:
try:
requests.post(f"{BACKEND_URL}/predict/terminate/{task_id}", timeout=3)
except Exception:
pass
# 清理用户临时目录
cleanup_user_tmp_dir(session_id)
def record_access(request: gr.Request):
user_ip = request.client.host if request else "unknown"
user_agent = request.headers.get("user-agent", "unknown")
log_access(user_ip, user_agent)
return update_log_display()
custom_css = """
#simulation-panel {
border-radius: 8px;
padding: 20px;
background: #f9f9f9;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
#result-panel {
border-radius: 8px;
padding: 20px;
background: #f0f8ff;
}
.dark #simulation-panel { background: #2a2a2a; }
.dark #result-panel { background: #1a2a3a; }
.history-container {
max-height: 600px;
overflow-y: auto;
margin-top: 20px;
}
.history-accordion {
margin-bottom: 10px;
}
"""
header_html = """
<div style="display: flex; justify-content: space-between; align-items: center; width: 100%; margin-bottom: 20px; padding: 20px; background: linear-gradient(135deg, #e0e5ec 0%, #a7b5d0 100%); border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<div style="display: flex; align-items: center;">
<img src="https://www.shlab.org.cn/static/img/index_14.685f6559.png" alt="Institution Logo" style="height: 60px; margin-right: 20px;">
<div>
<h1 style="margin: 0; color: #2c3e50; font-weight: 600;">🤖 InternNav Model Inference Demo</h1>
<p style="margin: 4px 0 0 0; color: #5d6d7e; font-size: 0.9em;">Model trained on InternNav framework</p>
</div>
</div>
<div style="display: flex; gap: 15px; align-items: center;">
<a href="https://github.com/OpenRobotLab" target="_blank" style="text-decoration: none; transition: transform 0.2s;" onmouseover="this.style.transform='scale(1.1)'" onmouseout="this.style.transform='scale(1)'">
<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" style="height: 30px;">
</a>
<a href="https://huggingface.co/OpenRobotLab" target="_blank" style="text-decoration: none; transition: transform 0.2s;" onmouseover="this.style.transform='scale(1.1)'" onmouseout="this.style.transform='scale(1)'">
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="HuggingFace" style="height: 30px;">
</a>
<a href="https://huggingface.co/spaces/OpenRobotLab/InternManip-eval-demo" target="_blank">
<button style="padding: 8px 15px; background: #3498db; color: white; border: none; border-radius: 4px; cursor: pointer; font-weight: 500; transition: all 0.2s;"
onmouseover="this.style.backgroundColor='#2980b9'; this.style.transform='scale(1.05)'"
onmouseout="this.style.backgroundColor='#3498db'; this.style.transform='scale(1)'">
Go to InternManip Demo
</button>
</a>
</div>
</div>
"""
with gr.Blocks(title="InternNav Model Inference Demo", css=custom_css) as demo:
gr.HTML(header_html)
history_state = gr.State([])
with gr.Row():
with gr.Column(elem_id="simulation-panel"):
gr.Markdown("### Simulation Settings")
scene_dropdown = gr.Dropdown(
label="Choose a scene",
choices=list(SCENE_CONFIGS.keys()),
value="demo1",
interactive=True
)
scene_description = gr.Markdown("")
scene_preview = gr.Image(
label="Scene Preview",
elem_classes=["scene-preview"],
interactive=False
)
prompt_input = gr.Textbox(
label="Navigation Prompt",
value="Walk past the left side of the bed and stop in the doorway.",
placeholder="e.g.: 'Walk past the left side of the bed and stop in the doorway.'",
lines=2,
max_lines=4
)
model_dropdown = gr.Dropdown(
label="Chose a pretrained model",
choices=MODEL_CHOICES,
value=MODEL_CHOICES[0],
interactive=True
)
mode_dropdown = gr.Dropdown(
label="Select Mode",
choices=MODE_CHOICES,
value=MODE_CHOICES[0],
interactive=True
)
scene_dropdown.change(
fn=lambda scene: [update_scene_display(scene)[0], update_scene_display(scene)[1], get_scene_instruction(scene)],
inputs=scene_dropdown,
outputs=[scene_description, scene_preview, prompt_input]
)
submit_btn = gr.Button("Start Navigation Simulation", variant="primary")
with gr.Column(elem_id="result-panel"):
gr.Markdown("### Latest Simulation Result")
video_output = gr.Video(
label="Live",
interactive=False,
format="mp4",
autoplay=True,
streaming=True
)
with gr.Column() as history_container:
gr.Markdown("### History")
gr.Markdown("#### History will be reset after refresh")
history_slots = []
for i in range(10):
with gr.Column(visible=False) as slot:
with gr.Accordion(visible=False, open=False) as accordion:
video = gr.Video(interactive=False)
detail_md = gr.Markdown()
history_slots.append((slot, accordion, video, detail_md))
gr.Examples(
examples=[
["demo1", "rdp", "vlnPE", "Walk past the left side of the bed and stop in the doorway."],
["demo2", "rdp", "vlnPE", "Walk through the bathroom, past the sink and toilet. Stop in front of the counter with the two suitcase."],
["demo3", "rdp", "vlnPE", "Do a U-turn. Walk forward through the kitchen, heading to the black door. Walk out of the door and take a right onto the deck. Walk out on to the deck and stop."],
["demo4", "rdp", "vlnPE", "Walk out of bathroom and stand on white bath mat."],
["demo5", "rdp", "vlnPE", "Walk straight through the double wood doors, follow the red carpet straight to the next doorway and stop where the carpet splits off."]
],
inputs=[scene_dropdown, model_dropdown, mode_dropdown, prompt_input],
label="Navigation Task Examples"
)
submit_btn.click(
fn=run_simulation,
inputs=[scene_dropdown, model_dropdown, mode_dropdown, prompt_input, history_state],
outputs=[video_output, history_state],
queue=True,
api_name="run_simulation"
).then(
fn=update_history_display,
inputs=history_state,
outputs=[comp for slot in history_slots for comp in slot],
queue=True
)
demo.load(
fn=lambda: update_scene_display("demo1"),
outputs=[scene_description, scene_preview]
)
demo.load(
fn=record_access,
inputs=None,
outputs=None,
queue=False
)
demo.queue(default_concurrency_limit=8)
demo.unload(fn=cleanup_session)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860, # Hugging Face Space默认端口
share=False,
debug=False, # 生产环境建议关闭debug
allowed_paths=["./assets", "./logs", "./tmp"] # 添加临时目录到允许路径
)