File size: 3,012 Bytes
649d5f9
 
18c9386
 
 
649d5f9
18c9386
fd20dab
ac5cb04
 
18c9386
649d5f9
 
18c9386
 
 
 
 
 
 
 
 
 
 
bea665a
 
57f1fb2
bea665a
 
57f1fb2
bea665a
18c9386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815dd17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
from transformers import AutoTokenizer, AutoModel
import torch

# 1. Dense embedding model (HF bi-encoder)
# dense_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# dense_model = SentenceTransformer('distiluse-base-multilingual-cased-v2')
dense_model = SentenceTransformer('multi-qa-mpnet-base-cos-v1')
def embed_dense(text: str):
    if not text.strip():
        return {"error": "Input text is empty."}
    emb = dense_model.encode([text])[0]
    return {"dense_embedding": emb.tolist()}

# 2. Sparse embedding model (BM25)
# Uses rank_bm25 to compute term weights

def embed_sparse(text: str):
    if not text.strip():
        return {"error": "Input text is empty."}
    tokens = text.split()
    bm25 = BM25Okapi([tokens])
    unique_terms = sorted(set(tokens))
    scores = bm25.get_scores(unique_terms)
    # Assign scores for all unique terms
    term_weights = {term: float(score) for term, score in zip(unique_terms, scores)}
    indices = list(range(len(unique_terms)))
    values = [term_weights.get(term, 0.0) for term in unique_terms]
    return {"indices": indices, "values": values, "terms": unique_terms}

# 3. Late-interaction embedding model (ColBERT)
colbert_tokenizer = AutoTokenizer.from_pretrained('colbert-ir/colbertv2.0', use_fast=True)
colbert_model = AutoModel.from_pretrained('colbert-ir/colbertv2.0')

# Freeze model parameters for inference speed
for param in colbert_model.parameters():
    param.requires_grad = False


def embed_colbert(text: str):
    if not text.strip():
        return {"error": "Input text is empty."}
    inputs = colbert_tokenizer(text, return_tensors='pt', truncation=True, max_length=64)
    with torch.no_grad():
        outputs = colbert_model(**inputs)
    # last_hidden_state: (1, seq_len, hidden_size)
    embeddings = outputs.last_hidden_state.squeeze(0).tolist()
    return {"colbert_embeddings": embeddings}

# Build Gradio interface with tabs for each model
with gr.Blocks(title="Text Embedding Playground") as demo:
    gr.Markdown("# Text Embedding Playground\nChoose a model and input text to get embeddings.")
    with gr.Tab("Dense (MiniLM-L6-v2)"):
        txt1 = gr.Textbox(lines=3, label="Input Text")
        out1 = gr.JSON(label="Embedding")
        txt1.submit(embed_dense, txt1, out1)
        gr.Button("Embed").click(embed_dense, txt1, out1)
    with gr.Tab("Sparse (BM25)"):
        txt2 = gr.Textbox(lines=3, label="Input Text")
        out2 = gr.JSON(label="Term Weights")
        txt2.submit(embed_sparse, txt2, out2)
        gr.Button("Embed").click(embed_sparse, txt2, out2)
    with gr.Tab("Late-Interaction (ColBERT)"):
        txt3 = gr.Textbox(lines=3, label="Input Text")
        out3 = gr.JSON(label="Embeddings per Token")
        txt3.submit(embed_colbert, txt3, out3)
        gr.Button("Embed").click(embed_colbert, txt3, out3)

if __name__ == "__main__":
    demo.launch(mcp_server=True)