File size: 6,270 Bytes
9d4b5f7
 
 
051bf4d
9d4b5f7
54723f5
9d4b5f7
 
 
051bf4d
9d4b5f7
 
 
051bf4d
 
 
 
9d4b5f7
051bf4d
9d4b5f7
051bf4d
9d4b5f7
 
 
051bf4d
 
9d4b5f7
051bf4d
 
 
 
 
 
9d4b5f7
051bf4d
 
 
9d4b5f7
 
051bf4d
9d4b5f7
051bf4d
 
9d4b5f7
 
 
 
 
051bf4d
 
9d4b5f7
051bf4d
9d4b5f7
 
051bf4d
9d4b5f7
 
051bf4d
f66c7a6
9d4b5f7
 
 
051bf4d
f66c7a6
051bf4d
9d4b5f7
 
 
051bf4d
 
 
f66c7a6
 
 
 
 
 
 
 
 
 
051bf4d
f66c7a6
 
80f4f7d
f66c7a6
051bf4d
 
f66c7a6
051bf4d
80f4f7d
051bf4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f84ec
 
a412cb3
f4f84ec
 
 
da9a0af
f4f84ec
 
9d4b5f7
 
051bf4d
 
 
 
 
 
 
 
9d4b5f7
051bf4d
 
 
 
 
 
 
 
9d4b5f7
 
 
051bf4d
9d4b5f7
5bf654c
ed3ab17
 
 
e7c8d0e
 
 
9d4b5f7
 
 
051bf4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import numpy as np
import faiss
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
from prompt import PROMPTS

# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def normalized_embedding(emb: np.ndarray) -> np.ndarray:
    return emb / np.linalg.norm(emb)

def load_embeddings(emb_path: str) -> dict[str, np.ndarray]:
    raw = json.load(open(emb_path, encoding="utf-8"))
    return {k: np.array(v, dtype="float32") for k, v in raw.items()}

def build_faiss_index_from_embeddings(emb_map: dict[str, np.ndarray]):
    keys   = list(emb_map.keys())
    matrix = np.stack([normalized_embedding(emb_map[k]) for k in keys]).astype("float32")
    index  = faiss.IndexFlatIP(matrix.shape[1])
    index.add(matrix)
    return index, keys

def load_value_segments(value_path: str) -> dict[str, dict[str,str]]:
    return json.load(open(value_path, encoding="utf-8"))

def generate_answer(tokenizer, model, system_prompt:str, query: str, context: str = "", conversation_history=None) -> str:
    B           = "<|begin_of_text|>"
    SS          = "<|start_header_id|>system<|end_header_id|>"
    SU          = "<|start_header_id|>user<|end_header_id|>"
    SA          = "<|start_header_id|>assistant<|end_header_id|>"
    EOT         = "<|eot_id|>"

    system_block = f"{B}\n{SS}\n{system_prompt}\n{EOT}\n"

    conv_text = ""
    if conversation_history:
        for msg in conversation_history:
            role    = msg["role"]
            content = msg["content"].strip()
            tag     = SU if role=="user" else SA
            conv_text += f"{tag}\n{content}\n{EOT}\n"

    if context:
        user_block = f"{query}\n\n### μ™ΈλΆ€ 지식 ###\n{context}"
    else:
        user_block = query
    conv_text += f"{SU}\n{user_block}\n{EOT}\n"
    conv_text += f"{SA}\n"

    prompt = system_block + conv_text

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(model.device)
    out    = model.generate(
        **inputs,
        max_new_tokens=512,
        do_sample=True,
        temperature=0.6,
        top_p=0.8,
    )
    decoded = tokenizer.decode(out[0], skip_special_tokens=False)
    answer  = decoded.split(prompt, 1)[-1]

    for tok in [B, SS, SU, SA, EOT]:
        answer = answer.replace(tok, "")
    return answer.strip()

def post_process_answer(raw: str, prev_answer: str = "") -> str:
    if not raw:
        return "제곡된 닡변이 μ—†μŠ΅λ‹ˆλ‹€."

    m = re.search(
        r"\<\|start_header_id\>assistant\<\|end_header_id\>(.*?)\<\|eot_id\>",
        raw, re.DOTALL
    )
    if m:
        ans = m.group(1).strip()
    else:
        ans = raw.strip()

    ans = re.sub(r"\<\|.*?\|\>", "", ans).strip()

    if ans.lower().count("assistant") >= 4:
        return "제곡된 닡변이 μ—†μŠ΅λ‹ˆλ‹€."

    if not ans or ans == prev_answer.strip():
        return "제곡된 닡변이 μ—†μŠ΅λ‹ˆλ‹€."

    return ans
  
def answer_query(
    query: str,
    emb_key_path: str,
    value_text_path: str,
    tokenizer,
    model,
    system_prompt: str,
    rag_model,
    conversation_history=None,
    threshold: float = 0.65
) -> str:
    emb_map, _ = load_embeddings(emb_key_path), None
    index, keys= build_faiss_index_from_embeddings(emb_map)
    value_map = load_value_segments(value_text_path)

    q_emb = rag_model.encode(query, convert_to_tensor=True).cpu().numpy().squeeze()
    q_norm= normalized_embedding(q_emb).astype("float32").reshape(1,-1)
    D, I  = index.search(q_norm, 1)
    score, idx = float(D[0,0]), int(I[0,0])

    if score >= threshold:
        full_key    = keys[idx]
        file_key, seg_id = full_key.rsplit("_",1)
        context     = value_map[file_key]["segments"].get(seg_id, "")
        print(f"βœ… μœ μ‚¬λ„: {score:.4f}, context 쀀비됨 β†’ '{context[:30]}…'")
    else:
        context = ""
        print(f"❌ μœ μ‚¬λ„ {score:.4f} < {threshold} β†’ μ™ΈλΆ€ 지식 λ―Έμ‚¬μš©")

    raw = generate_answer(
        tokenizer=tokenizer,
        model=model,
        system_prompt=system_prompt,
        query=query,
        context=context,
        conversation_history=conversation_history
    )
    answer_text = post_process_answer(raw)
    print(f"\nβœ… Answer: {answer_text}\n")
    return answer_text

# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
EMB_KEY_PATH       = "staria_keys_embed.json"
VALUE_TEXT_PATH    = "staria_values.json"
MODEL_ID           = "JLee0/staria-pdf-chatbot-lora"

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="right")
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    load_in_8bit=True,   # λ˜λŠ” 4bit
    device_map="auto"
)

rag_embedder = SentenceTransformer("JLee0/rag-embedder-staria-10epochs")
SYSTEM_PROMPT = PROMPTS["staria_after"]

def chat(query, history):
    conv = []
    for u, a in history or []:
        conv.append({"role":"user",      "content":u})
        conv.append({"role":"assistant", "content":a})
    return answer_query(
        query=query,
        emb_key_path=EMB_KEY_PATH,
        value_text_path=VALUE_TEXT_PATH,
        tokenizer=tokenizer,
        model=model,
        system_prompt=SYSTEM_PROMPT,
        rag_model=rag_embedder,
        conversation_history=conv,
        threshold=0.65
    )

demo = gr.ChatInterface(
    fn=chat,
    examples=[
        ["μ—”μ§„ 였일 ꡐ체 μ‹œ μ£Όμ˜ν•΄μ•Ό ν•  사항은 λ¬΄μ—‡μΈκ°€μš”?"],
        ["빌트인 μΊ  λ°μ΄ν„°λŠ” μ–΄λ–»κ²Œ μ²˜λ¦¬ν•˜λ©΄ 돼?"],
        ["와셔앑 λΆ„μΆœ κΈ°λŠ₯을 μ‚¬μš©ν•œ ν›„ μŠ€μœ„μΉ˜λ₯Ό λ‹€μ‹œ μ›μœ„μΉ˜λ‘œ λŒλ €μ•Ό ν•˜λ‚˜μš”?"],
        ["μ°¨λŸ‰ μ‹œλ™μ„ 꺼도 에어컨 섀정이 μœ μ§€λ˜λ‚˜μš”?"]
    ],
    title="ν˜„λŒ€ μŠ€νƒ€λ¦¬μ•„ Q&A 챗봇",
    description="챗봇에 μ˜€μ‹  것을 ν™˜μ˜ν•©λ‹ˆλ‹€! μ§ˆλ¬Έμ„ μž…λ ₯ν•΄ μ£Όμ„Έμš”."
)

if __name__ == "__main__":
    demo.launch()