File size: 9,838 Bytes
b3b7a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# embedding_models.py
import hashlib
import logging
import os
import shutil
import time
from pathlib import Path
from typing import List, Dict, Any, Optional

from langchain_openai import OpenAIEmbeddings
from langchain_core.documents import Document
from langchain_qdrant import QdrantVectorStore
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
import qdrant_client
from qdrant_client.http.models import Distance, VectorParams

# Logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class CacheManager:
    """Cache manager with limits for Hugging Face Spaces"""
    
    def __init__(self, cache_directory: str = "./cache", max_size_mb: int = 500, max_age_days: int = 7):
        self.cache_directory = Path(cache_directory)
        self.max_size_bytes = max_size_mb * 1024 * 1024  # Convert to bytes
        self.max_age_seconds = max_age_days * 24 * 60 * 60  # Convert to seconds
        
    def get_cache_size(self) -> int:
        """Compute the total cache size in bytes"""
        total_size = 0
        if self.cache_directory.exists():
            for file_path in self.cache_directory.rglob('*'):
                if file_path.is_file():
                    total_size += file_path.stat().st_size
        return total_size
    
    def get_cache_size_mb(self) -> float:
        """Return the cache size in MB"""
        return self.get_cache_size() / (1024 * 1024)
    
    def clean_old_files(self):
        """Delete cache files that are too old"""
        if not self.cache_directory.exists():
            return
            
        current_time = time.time()
        deleted_count = 0
        
        for file_path in self.cache_directory.rglob('*'):
            if file_path.is_file():
                file_age = current_time - file_path.stat().st_mtime
                if file_age > self.max_age_seconds:
                    try:
                        file_path.unlink()
                        deleted_count += 1
                    except Exception as e:
                        logger.warning(f"Unable to delete {file_path}: {e}")
        
        if deleted_count > 0:
            logger.info(f"🧹 Cache cleaned: {deleted_count} old files deleted")
    
    def clear_cache_if_too_large(self):
        """Completely clear the cache if it exceeds the size limit"""
        current_size_mb = self.get_cache_size_mb()
        
        if current_size_mb > (self.max_size_bytes / (1024 * 1024)):
            logger.warning(f"Cache too large ({current_size_mb:.1f}MB > {self.max_size_bytes/(1024*1024)}MB)")
            try:
                if self.cache_directory.exists():
                    shutil.rmtree(self.cache_directory)
                    self.cache_directory.mkdir(parents=True, exist_ok=True)
                    logger.info("Cache fully cleared to save disk space")
            except Exception as e:
                logger.error(f"Error while clearing cache: {e}")
    
    def cleanup_cache(self):
        """Smart cache cleanup"""
        # 1. Clean old files
        self.clean_old_files()
        
        # 2. Check size after cleaning
        current_size_mb = self.get_cache_size_mb()
        
        # 3. If still too large, clear completely
        if current_size_mb > (self.max_size_bytes / (1024 * 1024)):
            self.clear_cache_if_too_large()
        else:
            logger.info(f"Cache size: {current_size_mb:.1f}MB (OK)")


class OpenAIEmbeddingModel:
    """OpenAI embedding model with smart caching for Hugging Face Spaces"""
    
    def __init__(self, model_name: str = "text-embedding-3-small", persist_directory: str = "./vector_stores", 
                 max_cache_size_mb: int = 500, max_cache_age_days: int = 7):
        self.name = "OpenAI Embeddings (Smart Cache)"
        self.description = f"OpenAI embedding model {model_name} with smart caching for HF Spaces"
        self.model_name = model_name
        self.vector_dim = 1536  # Dimension of OpenAI vectors
        
        # Setup directories
        self.persist_directory = Path(persist_directory)
        self.persist_directory.mkdir(parents=True, exist_ok=True)
        self.cache_directory = Path("./cache")
        self.cache_directory.mkdir(parents=True, exist_ok=True)
        
        # Initialize cache manager with limits for HF Spaces
        self.cache_manager = CacheManager(
            cache_directory=str(self.cache_directory),
            max_size_mb=max_cache_size_mb,
            max_age_days=max_cache_age_days
        )
        
        # Initialize components
        self.client = None
        self.vector_store = None
        self.retriever = None
        self.embeddings = None
        
        self._setup_embeddings()
    
    def _setup_embeddings(self):
        """Setup OpenAI embeddings with smart caching"""
        # Clean cache before starting
        logger.info("🔍 Checking cache state...")
        self.cache_manager.cleanup_cache()
        
        # Create base OpenAI embeddings
        base_embeddings = OpenAIEmbeddings(model=self.model_name)
        
        # Create cached version
        namespace_key = f"openai_{self.model_name}"
        safe_namespace = hashlib.md5(namespace_key.encode()).hexdigest()
        
        # Setup local file store for caching
        store = LocalFileStore(str(self.cache_directory))
        
        # Create cached embeddings
        self.embeddings = CacheBackedEmbeddings.from_bytes_store(
            base_embeddings, 
            store, 
            namespace=safe_namespace,
            batch_size=32
        )
        
        cache_size = self.cache_manager.get_cache_size_mb()
        logger.info(f"[{self.name}] Embeddings configured with smart cache (Size: {cache_size:.1f}MB)")
    
    def _collection_exists(self, collection_name: str) -> bool:
        """Check if a collection already exists"""
        try:
            collections = self.client.get_collections()
            return any(collection.name == collection_name for collection in collections.collections)
        except Exception as e:
            logger.warning(f"Error while checking collection {collection_name}: {e}")
            return False
    
    def create_vector_store(self, documents: List[Document], collection_name: str, k: int = 5) -> None:
        """Create the vector store for documents"""
        # Path for persistent Qdrant storage - model-specific subdirectory
        qdrant_path = self.persist_directory / "qdrant_db" / "openai_cached"
        qdrant_path.mkdir(parents=True, exist_ok=True)
        
        # Initialize Qdrant client with persistent storage
        self.client = qdrant_client.QdrantClient(path=str(qdrant_path))
        
        # Check if the collection already exists
        if self._collection_exists(collection_name):
            logger.info(f"[{self.name}] Collection '{collection_name}' already exists, loading...")
            # Load the existing vector store
            self.vector_store = QdrantVectorStore(
                client=self.client,
                collection_name=collection_name,
                embedding=self.embeddings,
            )
        else:
            logger.info(f"[{self.name}] Creating new collection '{collection_name}'...")
            # Create a collection
            self.client.create_collection(
                collection_name=collection_name,
                vectors_config=VectorParams(size=self.vector_dim, distance=Distance.COSINE)
            )
            
            # Create the vector store
            self.vector_store = QdrantVectorStore(
                client=self.client,
                collection_name=collection_name,
                embedding=self.embeddings,
            )
            
            # Add documents (caching will happen automatically)
            logger.info(f"[{self.name}] Adding {len(documents)} documents (with embedding cache)...")
            self.vector_store.add_documents(documents=documents)
            logger.info(f"[{self.name}] Vector store created successfully")
        
        # Create the retriever
        self.retriever = self.vector_store.as_retriever(search_kwargs={"k": k})
        
        # Check cache size after adding documents
        cache_size = self.cache_manager.get_cache_size_mb()
        if cache_size > 100:  # Alert if > 100MB
            logger.warning(f"Large cache: {cache_size:.1f}MB - consider cleaning soon")
    
    def get_retriever(self):
        """Returns the retriever"""
        if self.retriever is None:
            raise ValueError("The vector store has not been initialized")
        return self.retriever
    
    def get_cache_info(self) -> Dict[str, Any]:
        """Return information about the cache state"""
        return {
            "cache_size_mb": self.cache_manager.get_cache_size_mb(),
            "max_size_mb": self.cache_manager.max_size_bytes / (1024 * 1024),
            "max_age_days": self.cache_manager.max_age_seconds / (24 * 60 * 60),
            "cache_directory": str(self.cache_directory)
        }
    
    def manual_cache_cleanup(self):
        """Manual cache cleanup"""
        logger.info("🧹 Manual cache cleanup requested...")
        self.cache_manager.cleanup_cache()


def create_embedding_model(persist_directory: str = "./vector_stores", 
                          max_cache_size_mb: int = 500, 
                          max_cache_age_days: int = 7) -> OpenAIEmbeddingModel:
    
    logger.info(f"Creating optimized OpenAI model (Max cache: {max_cache_size_mb}MB, Max age: {max_cache_age_days}d)")
    return OpenAIEmbeddingModel(
        persist_directory=persist_directory,
        max_cache_size_mb=max_cache_size_mb,
        max_cache_age_days=max_cache_age_days
    )