Spaces:
Sleeping
Sleeping
File size: 9,838 Bytes
b3b7a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# embedding_models.py
import hashlib
import logging
import os
import shutil
import time
from pathlib import Path
from typing import List, Dict, Any, Optional
from langchain_openai import OpenAIEmbeddings
from langchain_core.documents import Document
from langchain_qdrant import QdrantVectorStore
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
import qdrant_client
from qdrant_client.http.models import Distance, VectorParams
# Logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class CacheManager:
"""Cache manager with limits for Hugging Face Spaces"""
def __init__(self, cache_directory: str = "./cache", max_size_mb: int = 500, max_age_days: int = 7):
self.cache_directory = Path(cache_directory)
self.max_size_bytes = max_size_mb * 1024 * 1024 # Convert to bytes
self.max_age_seconds = max_age_days * 24 * 60 * 60 # Convert to seconds
def get_cache_size(self) -> int:
"""Compute the total cache size in bytes"""
total_size = 0
if self.cache_directory.exists():
for file_path in self.cache_directory.rglob('*'):
if file_path.is_file():
total_size += file_path.stat().st_size
return total_size
def get_cache_size_mb(self) -> float:
"""Return the cache size in MB"""
return self.get_cache_size() / (1024 * 1024)
def clean_old_files(self):
"""Delete cache files that are too old"""
if not self.cache_directory.exists():
return
current_time = time.time()
deleted_count = 0
for file_path in self.cache_directory.rglob('*'):
if file_path.is_file():
file_age = current_time - file_path.stat().st_mtime
if file_age > self.max_age_seconds:
try:
file_path.unlink()
deleted_count += 1
except Exception as e:
logger.warning(f"Unable to delete {file_path}: {e}")
if deleted_count > 0:
logger.info(f"🧹 Cache cleaned: {deleted_count} old files deleted")
def clear_cache_if_too_large(self):
"""Completely clear the cache if it exceeds the size limit"""
current_size_mb = self.get_cache_size_mb()
if current_size_mb > (self.max_size_bytes / (1024 * 1024)):
logger.warning(f"Cache too large ({current_size_mb:.1f}MB > {self.max_size_bytes/(1024*1024)}MB)")
try:
if self.cache_directory.exists():
shutil.rmtree(self.cache_directory)
self.cache_directory.mkdir(parents=True, exist_ok=True)
logger.info("Cache fully cleared to save disk space")
except Exception as e:
logger.error(f"Error while clearing cache: {e}")
def cleanup_cache(self):
"""Smart cache cleanup"""
# 1. Clean old files
self.clean_old_files()
# 2. Check size after cleaning
current_size_mb = self.get_cache_size_mb()
# 3. If still too large, clear completely
if current_size_mb > (self.max_size_bytes / (1024 * 1024)):
self.clear_cache_if_too_large()
else:
logger.info(f"Cache size: {current_size_mb:.1f}MB (OK)")
class OpenAIEmbeddingModel:
"""OpenAI embedding model with smart caching for Hugging Face Spaces"""
def __init__(self, model_name: str = "text-embedding-3-small", persist_directory: str = "./vector_stores",
max_cache_size_mb: int = 500, max_cache_age_days: int = 7):
self.name = "OpenAI Embeddings (Smart Cache)"
self.description = f"OpenAI embedding model {model_name} with smart caching for HF Spaces"
self.model_name = model_name
self.vector_dim = 1536 # Dimension of OpenAI vectors
# Setup directories
self.persist_directory = Path(persist_directory)
self.persist_directory.mkdir(parents=True, exist_ok=True)
self.cache_directory = Path("./cache")
self.cache_directory.mkdir(parents=True, exist_ok=True)
# Initialize cache manager with limits for HF Spaces
self.cache_manager = CacheManager(
cache_directory=str(self.cache_directory),
max_size_mb=max_cache_size_mb,
max_age_days=max_cache_age_days
)
# Initialize components
self.client = None
self.vector_store = None
self.retriever = None
self.embeddings = None
self._setup_embeddings()
def _setup_embeddings(self):
"""Setup OpenAI embeddings with smart caching"""
# Clean cache before starting
logger.info("🔍 Checking cache state...")
self.cache_manager.cleanup_cache()
# Create base OpenAI embeddings
base_embeddings = OpenAIEmbeddings(model=self.model_name)
# Create cached version
namespace_key = f"openai_{self.model_name}"
safe_namespace = hashlib.md5(namespace_key.encode()).hexdigest()
# Setup local file store for caching
store = LocalFileStore(str(self.cache_directory))
# Create cached embeddings
self.embeddings = CacheBackedEmbeddings.from_bytes_store(
base_embeddings,
store,
namespace=safe_namespace,
batch_size=32
)
cache_size = self.cache_manager.get_cache_size_mb()
logger.info(f"[{self.name}] Embeddings configured with smart cache (Size: {cache_size:.1f}MB)")
def _collection_exists(self, collection_name: str) -> bool:
"""Check if a collection already exists"""
try:
collections = self.client.get_collections()
return any(collection.name == collection_name for collection in collections.collections)
except Exception as e:
logger.warning(f"Error while checking collection {collection_name}: {e}")
return False
def create_vector_store(self, documents: List[Document], collection_name: str, k: int = 5) -> None:
"""Create the vector store for documents"""
# Path for persistent Qdrant storage - model-specific subdirectory
qdrant_path = self.persist_directory / "qdrant_db" / "openai_cached"
qdrant_path.mkdir(parents=True, exist_ok=True)
# Initialize Qdrant client with persistent storage
self.client = qdrant_client.QdrantClient(path=str(qdrant_path))
# Check if the collection already exists
if self._collection_exists(collection_name):
logger.info(f"[{self.name}] Collection '{collection_name}' already exists, loading...")
# Load the existing vector store
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name=collection_name,
embedding=self.embeddings,
)
else:
logger.info(f"[{self.name}] Creating new collection '{collection_name}'...")
# Create a collection
self.client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=self.vector_dim, distance=Distance.COSINE)
)
# Create the vector store
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name=collection_name,
embedding=self.embeddings,
)
# Add documents (caching will happen automatically)
logger.info(f"[{self.name}] Adding {len(documents)} documents (with embedding cache)...")
self.vector_store.add_documents(documents=documents)
logger.info(f"[{self.name}] Vector store created successfully")
# Create the retriever
self.retriever = self.vector_store.as_retriever(search_kwargs={"k": k})
# Check cache size after adding documents
cache_size = self.cache_manager.get_cache_size_mb()
if cache_size > 100: # Alert if > 100MB
logger.warning(f"Large cache: {cache_size:.1f}MB - consider cleaning soon")
def get_retriever(self):
"""Returns the retriever"""
if self.retriever is None:
raise ValueError("The vector store has not been initialized")
return self.retriever
def get_cache_info(self) -> Dict[str, Any]:
"""Return information about the cache state"""
return {
"cache_size_mb": self.cache_manager.get_cache_size_mb(),
"max_size_mb": self.cache_manager.max_size_bytes / (1024 * 1024),
"max_age_days": self.cache_manager.max_age_seconds / (24 * 60 * 60),
"cache_directory": str(self.cache_directory)
}
def manual_cache_cleanup(self):
"""Manual cache cleanup"""
logger.info("🧹 Manual cache cleanup requested...")
self.cache_manager.cleanup_cache()
def create_embedding_model(persist_directory: str = "./vector_stores",
max_cache_size_mb: int = 500,
max_cache_age_days: int = 7) -> OpenAIEmbeddingModel:
logger.info(f"Creating optimized OpenAI model (Max cache: {max_cache_size_mb}MB, Max age: {max_cache_age_days}d)")
return OpenAIEmbeddingModel(
persist_directory=persist_directory,
max_cache_size_mb=max_cache_size_mb,
max_cache_age_days=max_cache_age_days
) |