Jaal047 commited on
Commit
ee8c5b2
·
verified ·
1 Parent(s): ae6fcc0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -61
app.py CHANGED
@@ -1,64 +1,39 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from langchain.vectorstores import FAISS
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from groq import Groq
5
+
6
+ # Load FAISS index
7
+ vector_store = FAISS.load_local("faiss_index", HuggingFaceEmbeddings())
8
+
9
+ # Inisialisasi API Groq
10
+ client = Groq(api_key="YOUR_GROQ_API_KEY")
11
+
12
+ def retrieve_and_generate(query):
13
+ # Retrieve top 3 documents
14
+ docs = vector_store.similarity_search(query, k=3)
15
+ context = "\n\n".join([doc.page_content for doc in docs])
16
+
17
+ # Generate response with LLM
18
+ response = client.chat.completions.create(
19
+ model="mixtral-8x7b-32768",
20
+ messages=[
21
+ {"role": "system", "content": "Anda adalah asisten AI yang menjawab pertanyaan tentang RoboHome berdasarkan dokumen ini."},
22
+ {"role": "user", "content": f"{context}\n\nPertanyaan: {query}"}
23
+ ],
24
+ temperature=0.7,
25
+ max_tokens=200
26
+ )
27
+
28
+ return response.choices[0].message.content
29
+
30
+ # UI dengan Gradio
31
+ iface = gr.Interface(
32
+ fn=retrieve_and_generate,
33
+ inputs=gr.Textbox(label="Ajukan pertanyaan tentang RoboHome"),
34
+ outputs=gr.Textbox(label="Jawaban"),
35
+ title="RoboHome RAG Chatbot",
36
+ description="Chatbot ini menjawab pertanyaan berdasarkan dokumentasi RoboHome.",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  )
38
 
39
+ iface.launch()