Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,22 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain_community.vectorstores import FAISS
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from groq import Groq
|
5 |
|
6 |
# Load FAISS index
|
7 |
-
vector_store = FAISS.load_local("robohome_faiss", HuggingFaceEmbeddings())
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Inisialisasi API Groq
|
10 |
-
client = Groq(api_key=
|
11 |
|
12 |
-
def retrieve_and_generate(query):
|
|
|
13 |
# Retrieve top 3 documents
|
14 |
docs = vector_store.similarity_search(query, k=3)
|
15 |
context = "\n\n".join([doc.page_content for doc in docs])
|
@@ -25,15 +32,18 @@ def retrieve_and_generate(query):
|
|
25 |
max_tokens=200
|
26 |
)
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
# UI dengan Gradio
|
31 |
-
iface = gr.
|
32 |
fn=retrieve_and_generate,
|
33 |
-
|
34 |
-
|
35 |
title="RoboHome RAG Chatbot",
|
36 |
description="Chatbot ini menjawab pertanyaan berdasarkan dokumentasi RoboHome.",
|
37 |
)
|
38 |
|
39 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from groq import Groq
|
6 |
|
7 |
# Load FAISS index
|
8 |
+
vector_store = FAISS.load_local("faiss_index/robohome_faiss", HuggingFaceEmbeddings()) # Pastikan path benar
|
9 |
+
|
10 |
+
# Load API Key dari variabel lingkungan
|
11 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
12 |
+
if not GROQ_API_KEY:
|
13 |
+
raise ValueError("⚠️ API Key Groq tidak ditemukan! Setel variabel lingkungan 'GROQ_API_KEY'.")
|
14 |
|
15 |
# Inisialisasi API Groq
|
16 |
+
client = Groq(api_key=GROQ_API_KEY)
|
17 |
|
18 |
+
def retrieve_and_generate(query, history=[]):
|
19 |
+
"""Retrieve knowledge base & generate response."""
|
20 |
# Retrieve top 3 documents
|
21 |
docs = vector_store.similarity_search(query, k=3)
|
22 |
context = "\n\n".join([doc.page_content for doc in docs])
|
|
|
32 |
max_tokens=200
|
33 |
)
|
34 |
|
35 |
+
# Return hasil dalam format chat
|
36 |
+
bot_response = response.choices[0].message.content
|
37 |
+
history.append((query, bot_response)) # Simpan ke history chat
|
38 |
+
return history, history
|
39 |
|
40 |
# UI dengan Gradio
|
41 |
+
iface = gr.ChatInterface(
|
42 |
fn=retrieve_and_generate,
|
43 |
+
chatbot=gr.Chatbot(label="Jawaban RoboHome"),
|
44 |
+
textbox=gr.Textbox(label="Ajukan pertanyaan tentang RoboHome"),
|
45 |
title="RoboHome RAG Chatbot",
|
46 |
description="Chatbot ini menjawab pertanyaan berdasarkan dokumentasi RoboHome.",
|
47 |
)
|
48 |
|
49 |
+
iface.launch(share=True) # Share=True untuk membuat link publik
|