File size: 5,424 Bytes
68c747b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
import warnings
import torch
import json
import soundfile as sf
import numpy as np
from huggingface_hub import login
from transformers.utils import logging as transformers_logging
from transformers import (
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
pipeline
)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from jiwer import wer
import gradio as gr
# -------------------------------------------------------------------------------------------------------------------
# Environment + Logging Setup
HF_Key = os.environ.get("HF_Key")
login(token=HF_Key)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
transformers_logging.set_verbosity_error()
warnings.filterwarnings("ignore", category=UserWarning)
# -------------------------------------------------------------------------------------------------------------------
# Utility: Cosine similarity-based WER
def cosine_sim_wer_single(reference, prediction):
ref = reference.strip() if reference else ""
pred = prediction.strip() if prediction else ""
if not ref or not pred:
return 100.0
try:
vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 3))
vectors = vectorizer.fit_transform([ref, pred])
similarity = cosine_similarity(vectors[0:1], vectors[1:2])[0][0] * 100
error_rate = 100.0 - similarity
return round(error_rate, 2)
except Exception:
return 100.0
# -------------------------------------------------------------------------------------------------------------------
# Load TTS Models
model_id = 'Jacaranda-Health/Speecht5'
speaker_file_path = 'speaker.json'
with open(speaker_file_path, 'r') as file:
example = json.load(file)
speaker_embeddings = torch.tensor(example).unsqueeze(0)
l_model = SpeechT5ForTextToSpeech.from_pretrained("eolang/speecht5_v4-2")
l_processor = SpeechT5Processor.from_pretrained(model_id)
l_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
def synthesize(input_text):
inputs = l_processor(text=input_text, return_tensors="pt")
speech = l_model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=l_vocoder)
output_path = 'test_output.wav'
sf.write(output_path, speech.numpy(), 16000)
return output_path
# -------------------------------------------------------------------------------------------------------------------
# Load STT Pipelines
tuned_pipeline = pipeline(
"automatic-speech-recognition",
model="Jacaranda-Health/ASR-STT",
device=device,
return_timestamps=True,
generate_kwargs={
"no_repeat_ngram_size": 3,
"repetition_penalty": 1.5,
}
)
openai_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device=device,
return_timestamps=True,
generate_kwargs={
"no_repeat_ngram_size": 3,
"repetition_penalty": 1.5,
}
)
def tunned_transcribe(filepath):
transcription = tuned_pipeline(filepath, return_timestamps=True)
return transcription["text"]
def openai_transcribe(filepath):
transcription = openai_pipeline(filepath, return_timestamps=True)
return transcription["text"]
# -------------------------------------------------------------------------------------------------------------------
# Full Loop: TTS β STT β Eval
def full_loop(ref_text):
output_wav = synthesize(ref_text)
tunned_text = tunned_transcribe(output_wav)
openai_text = openai_transcribe(output_wav)
tunned_WER = wer(ref_text, tunned_text)
base_WER = wer(ref_text, openai_text)
tunned_cosine = cosine_sim_wer_single(ref_text, tunned_text)
base_cosine = cosine_sim_wer_single(ref_text, openai_text)
result = f"""π **Tunned Model Transcription:**
{tunned_text}
WER: {round(tunned_WER, 2)}
Cosine-based WER: {tunned_cosine}%
π’ **Base Model Transcription:**
{openai_text}
WER: {round(base_WER, 2)}
Cosine-based WER: {base_cosine}%"""
return output_wav, result
# -------------------------------------------------------------------------------------------------------------------
# Transcription Tab
def transcribe_tab(audio, model_type):
if model_type == "Tuned":
return tunned_transcribe(audio)
return openai_transcribe(audio)
transcribe_ui = gr.Interface(
fn=transcribe_tab,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.Radio(["Tuned", "Base"], label="Choose Model", value="Tuned")
],
outputs=gr.Textbox(label="Transcription"),
title="Speech to Text"
)
# -------------------------------------------------------------------------------------------------------------------
# Synthesis Tab
synthesize_ui = gr.Interface(
fn=full_loop,
inputs=gr.Textbox(label="Enter Text"),
outputs=[gr.Audio(label="Synthesized Audio"), gr.Textbox(label="Evaluation")],
title="Text to Speech + Eval"
)
# -------------------------------------------------------------------------------------------------------------------
# Combine as Tabs
demo = gr.TabbedInterface(
interface_list=[transcribe_ui, synthesize_ui],
tab_names=["Transcribe Audio", "Synthesize & Evaluate"]
)
if __name__ == "__main__":
demo.launch()
|