File size: 7,551 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import os
import torch
import gguf # This needs to be the llama.cpp one specifically!
import argparse
from tqdm import tqdm

from safetensors.torch import load_file

QUANTIZATION_THRESHOLD = 1024
REARRANGE_THRESHOLD = 512
MAX_TENSOR_NAME_LENGTH = 127

# Tuple of arch_name, match_lists.
# Each item in match_lists is a tuple of keys that must match.
# All keys in a match_lists item must exist for the architecture to match.
# The architectures are checked in order and the first successful match terminates the search.
MODEL_DETECTION = (
    ("flux", (
        ("transformer_blocks.0.attn.norm_added_k.weight",),
        ("double_blocks.0.img_attn.proj.weight",),
    )),
    ("sd3", (
        ("transformer_blocks.0.attn.add_q_proj.weight",),
    )),
    ("sdxl", (
        ("down_blocks.0.downsamplers.0.conv.weight", "add_embedding.linear_1.weight",),
        (
            "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight",
            "output_blocks.2.2.conv.weight", "output_blocks.5.2.conv.weight",
        ), # Non-diffusers
        ("label_emb.0.0.weight",),
    )),
    ("sd1", (
        ("down_blocks.0.downsamplers.0.conv.weight",),
        (
            "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", "input_blocks.9.0.op.weight",
            "output_blocks.2.1.conv.weight", "output_blocks.5.2.conv.weight", "output_blocks.8.2.conv.weight"
        ), # Non-diffusers
    )),
)


def parse_args():
    parser = argparse.ArgumentParser(description="Generate F16 GGUF files from single UNET")
    parser.add_argument("--src", required=True, help="Source model ckpt file.")
    parser.add_argument("--dst", help="Output unet gguf file.")
    args = parser.parse_args()

    if not os.path.isfile(args.src):
        parser.error("No input provided!")

    return args

def load_state_dict(path):
    if any(path.endswith(x) for x in [".ckpt", ".pt", ".bin", ".pth"]):
        state_dict = torch.load(path, map_location="cpu", weights_only=True)
        state_dict = state_dict.get("model", state_dict)
    else:
        state_dict = load_file(path)

    # only keep unet with no prefix!
    sd = {}
    has_prefix = any(["model.diffusion_model." in x for x in state_dict.keys()])
    for k, v in state_dict.items():
        if has_prefix and "model.diffusion_model." not in k:
            continue
        if has_prefix:
            k = k.replace("model.diffusion_model.", "")
        sd[k] = v

    return sd

def detect_arch(state_dict):
    for arch, match_lists in MODEL_DETECTION:
        for match_list in match_lists:
            if all(key in state_dict for key in match_list):
                return arch
    breakpoint()
    raise ValueError("Unknown model architecture!")


def load_model(path):
    state_dict = load_state_dict(path)
    arch = detect_arch(state_dict)
    print(f"* Architecture detected from input: {arch}")
    if arch == "flux" and "transformer_blocks.0.attn.norm_added_k.weight" in state_dict:
        raise ValueError("The Diffusers UNET can not be used for this!")
    writer = gguf.GGUFWriter(path=None, arch=arch)
    return (writer, state_dict)

def handle_tensors(args, writer, state_dict):
    # TODO list:
    # - do something about this being awful and hacky

    name_lengths = tuple(sorted(
        ((key, len(key)) for key in state_dict.keys()),
        key=lambda item: item[1],
        reverse=True,
    ))
    if not name_lengths:
        return
    max_name_len = name_lengths[0][1]
    if max_name_len > MAX_TENSOR_NAME_LENGTH:
        bad_list = ", ".join(f"{key!r} ({namelen})" for key, namelen in name_lengths if namelen > MAX_TENSOR_NAME_LENGTH)
        raise ValueError(f"Can only handle tensor names up to {MAX_TENSOR_NAME_LENGTH} characters. Tensors exceeding the limit: {bad_list}")
    for key, data in tqdm(state_dict.items()):
        old_dtype = data.dtype

        if data.dtype == torch.bfloat16:
            data = data.to(torch.float32).numpy()
        # this is so we don't break torch 2.0.X
        elif data.dtype in [getattr(torch, "float8_e4m3fn", "_invalid"), getattr(torch, "float8_e5m2", "_invalid")]:
            data = data.to(torch.float16).numpy()
        else:
            data = data.numpy()

        n_dims = len(data.shape)
        data_shape = data.shape
        data_qtype = getattr(
            gguf.GGMLQuantizationType,
            "BF16" if old_dtype == torch.bfloat16 else "F16"
        )

        # get number of parameters (AKA elements) in this tensor
        n_params = 1
        for dim_size in data_shape:
            n_params *= dim_size

        # keys to keep as max precision
        blacklist = {
            "time_embedding.",
            "add_embedding.",
            "time_in.",
            "txt_in.",
            "vector_in.",
            "img_in.",
            "guidance_in.",
            "final_layer.",
        }

        if old_dtype in (torch.float32, torch.bfloat16):
            if n_dims == 1:
                # one-dimensional tensors should be kept in F32
                # also speeds up inference due to not dequantizing
                data_qtype = gguf.GGMLQuantizationType.F32

            elif n_params <= QUANTIZATION_THRESHOLD:
                # very small tensors
                data_qtype = gguf.GGMLQuantizationType.F32

            elif ".weight" in key and any(x in key for x in blacklist):
                data_qtype = gguf.GGMLQuantizationType.F32

        if (    n_dims > 1                              # Skip one-dimensional tensors
            and n_params >= REARRANGE_THRESHOLD         # Only rearrange tensors meeting the size requirement
            and (n_params / 256).is_integer()           # Rearranging only makes sense if total elements is divisible by 256
            and not (data.shape[-1] / 256).is_integer() # Only need to rearrange if the last dimension is not divisible by 256
        ):
            orig_shape = data.shape
            data = data.reshape(n_params // 256, 256)
            writer.add_array(f"comfy.gguf.orig_shape.{key}", tuple(int(dim) for dim in orig_shape))

        try:
            data = gguf.quants.quantize(data, data_qtype)
        except (AttributeError, gguf.QuantError) as e:
            tqdm.write(f"falling back to F16: {e}")
            data_qtype = gguf.GGMLQuantizationType.F16
            data = gguf.quants.quantize(data, data_qtype)

        new_name = key # do we need to rename?

        shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
        tqdm.write(f"{f'%-{max_name_len + 4}s' % f'{new_name}'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")

        writer.add_tensor(new_name, data, raw_dtype=data_qtype)

if __name__ == "__main__":
    args = parse_args()
    path = args.src
    writer, state_dict = load_model(path)

    writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
    if next(iter(state_dict.values())).dtype == torch.bfloat16:
        out_path = f"{os.path.splitext(path)[0]}-BF16.gguf"
        writer.add_file_type(gguf.LlamaFileType.MOSTLY_BF16)
    else:
        out_path = f"{os.path.splitext(path)[0]}-F16.gguf"
        writer.add_file_type(gguf.LlamaFileType.MOSTLY_F16)

    out_path = args.dst or out_path
    if os.path.isfile(out_path):
        input("Output exists enter to continue or ctrl+c to abort!")

    handle_tensors(path, writer, state_dict)
    writer.write_header_to_file(path=out_path)
    writer.write_kv_data_to_file()
    writer.write_tensors_to_file(progress=True)
    writer.close()