Spaces:
Configuration error
Configuration error
File size: 13,147 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gc
import json
import os
import random
import re
import subprocess
import sys
from types import MethodType
import torch
import folder_paths
import comfy.model_management as mm
def chatglm3_text_encode(chatglm3_model, prompt):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.unload_all_models()
mm.soft_empty_cache()
# Function to randomly select an option from the brackets
def choose_random_option(match):
options = match.group(1).split('|')
return random.choice(options)
prompt = re.sub(r'\{([^{}]*)\}', choose_random_option, prompt)
# Define tokenizers and text encoders
tokenizer = chatglm3_model['tokenizer']
text_encoder = chatglm3_model['text_encoder']
text_encoder.to(device)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt",
).to(device)
output = text_encoder(
input_ids=text_inputs['input_ids'],
attention_mask=text_inputs['attention_mask'],
position_ids=text_inputs['position_ids'],
output_hidden_states=True)
# [batch_size, 77, 4096]
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
text_proj = output.hidden_states[-1][-1,
:, :].clone() # [batch_size, 4096]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, 1, 1)
prompt_embeds = prompt_embeds.view(
bs_embed, seq_len, -1)
bs_embed = text_proj.shape[0]
text_proj = text_proj.repeat(1, 1).view(
bs_embed, -1
)
text_encoder.to(offload_device)
mm.soft_empty_cache()
gc.collect()
return prompt_embeds, text_proj
def MZ_ChatGLM3Loader_call(args):
# from .mz_kolors_utils import Utils
# llm_dir = os.path.join(Utils.get_models_path(), "LLM")
chatglm3_checkpoint = args.get("chatglm3_checkpoint")
chatglm3_checkpoint_path = folder_paths.get_full_path(
'LLM', chatglm3_checkpoint)
if not os.path.exists(chatglm3_checkpoint_path):
raise RuntimeError(
f"ERROR: Could not find chatglm3 checkpoint: {chatglm3_checkpoint_path}")
from .chatglm3.configuration_chatglm import ChatGLMConfig
from .chatglm3.modeling_chatglm import ChatGLMModel
from .chatglm3.tokenization_chatglm import ChatGLMTokenizer
offload_device = mm.unet_offload_device()
text_encoder_config = os.path.join(
os.path.dirname(__file__), 'configs', 'text_encoder_config.json')
with open(text_encoder_config, 'r') as file:
config = json.load(file)
text_encoder_config = ChatGLMConfig(**config)
from comfy.utils import load_torch_file
from contextlib import nullcontext
is_accelerate_available = False
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
pass
with (init_empty_weights() if is_accelerate_available else nullcontext()):
with torch.no_grad():
# 打印版本号
print("torch version:", torch.__version__)
text_encoder = ChatGLMModel(text_encoder_config).eval()
if '4bit' in chatglm3_checkpoint:
try:
import cpm_kernels
except ImportError:
print("Installing cpm_kernels...")
subprocess.run(
[sys.executable, "-m", "pip", "install", "cpm_kernels"], check=True)
pass
text_encoder.quantize(4)
elif '8bit' in chatglm3_checkpoint:
text_encoder.quantize(8)
text_encoder_sd = load_torch_file(chatglm3_checkpoint_path)
if is_accelerate_available:
for key in text_encoder_sd:
set_module_tensor_to_device(
text_encoder, key, device=offload_device, value=text_encoder_sd[key])
else:
print("WARNING: Accelerate not available, use load_state_dict load model")
text_encoder.load_state_dict(text_encoder_sd)
tokenizer_path = os.path.join(
os.path.dirname(__file__), 'configs', "tokenizer")
tokenizer = ChatGLMTokenizer.from_pretrained(tokenizer_path)
return ({"text_encoder": text_encoder, "tokenizer": tokenizer},)
def MZ_ChatGLM3TextEncodeV2_call(args):
text = args.get("text")
chatglm3_model = args.get("chatglm3_model")
prompt_embeds, pooled_output = chatglm3_text_encode(
chatglm3_model,
text,
)
extra_kwargs = {
"pooled_output": pooled_output,
}
extra_cond_keys = [
"width",
"height",
"crop_w",
"crop_h",
"target_width",
"target_height"
]
for key, value in args.items():
if key in extra_cond_keys:
extra_kwargs[key] = value
return ([[
prompt_embeds,
# {"pooled_output": pooled_output},
extra_kwargs
]], )
def MZ_ChatGLM3Embeds2Conditioning_call(args):
kolors_embeds = args.get("kolors_embeds")
# kolors_embeds = {
# 'prompt_embeds': prompt_embeds,
# 'negative_prompt_embeds': negative_prompt_embeds,
# 'pooled_prompt_embeds': text_proj,
# 'negative_pooled_prompt_embeds': negative_text_proj
# }
positive = [[
kolors_embeds['prompt_embeds'],
{
"pooled_output": kolors_embeds['pooled_prompt_embeds'],
"width": args.get("width"),
"height": args.get("height"),
"crop_w": args.get("crop_w"),
"crop_h": args.get("crop_h"),
"target_width": args.get("target_width"),
"target_height": args.get("target_height")
}
]]
negative = [[
kolors_embeds['negative_prompt_embeds'],
{
"pooled_output": kolors_embeds['negative_pooled_prompt_embeds'],
}
]]
return (positive, negative)
def MZ_KolorsUNETLoaderV2_call(kwargs):
from . import hook_comfyui_kolors_v2
import comfy.sd
with hook_comfyui_kolors_v2.apply_kolors():
unet_name = kwargs.get("unet_name")
unet_path = folder_paths.get_full_path("unet", unet_name)
import comfy.utils
sd = comfy.utils.load_torch_file(unet_path)
model = comfy.sd.load_unet_state_dict(sd)
if model is None:
raise RuntimeError(
"ERROR: Could not detect model type of: {}".format(unet_path))
return (model, )
def MZ_KolorsCheckpointLoaderSimple_call(kwargs):
checkpoint_name = kwargs.get("ckpt_name")
ckpt_path = folder_paths.get_full_path("checkpoints", checkpoint_name)
from . import hook_comfyui_kolors_v2
import comfy.sd
with hook_comfyui_kolors_v2.apply_kolors():
out = comfy.sd.load_checkpoint_guess_config(
ckpt_path, output_vae=True, output_clip=False, embedding_directory=folder_paths.get_folder_paths("embeddings"))
unet, _, vae = out[:3]
return (unet, vae)
from comfy.cldm.cldm import ControlNet
from comfy.controlnet import ControlLora
def MZ_KolorsControlNetLoader_call(kwargs):
control_net_name = kwargs.get("control_net_name")
controlnet_path = folder_paths.get_full_path(
"controlnet", control_net_name)
from torch import nn
from . import hook_comfyui_kolors_v2
import comfy.controlnet
with hook_comfyui_kolors_v2.apply_kolors():
control_net = comfy.controlnet.load_controlnet(controlnet_path)
return (control_net, )
def MZ_KolorsControlNetPatch_call(kwargs):
import copy
from . import hook_comfyui_kolors_v2
import comfy.model_management
import comfy.model_patcher
model = kwargs.get("model")
control_net = kwargs.get("control_net")
if hasattr(control_net, "control_model") and hasattr(control_net.control_model, "encoder_hid_proj"):
return (control_net,)
control_net = copy.deepcopy(control_net)
import comfy.controlnet
if isinstance(control_net, ControlLora):
del_keys = []
for k in control_net.control_weights:
if k.startswith("label_emb.0.0."):
del_keys.append(k)
for k in del_keys:
control_net.control_weights.pop(k)
super_pre_run = ControlLora.pre_run
super_forward = ControlNet.forward
def KolorsControlNet_forward(self, x, hint, timesteps, context, **kwargs):
with torch.cuda.amp.autocast(enabled=True):
context = self.encoder_hid_proj(context)
return super_forward(self, x, hint, timesteps, context, **kwargs)
def KolorsControlLora_pre_run(self, *args, **kwargs):
result = super_pre_run(self, *args, **kwargs)
if hasattr(self, "control_model"):
if hasattr(self.control_model, "encoder_hid_proj"):
return result
setattr(self.control_model, "encoder_hid_proj",
model.model.diffusion_model.encoder_hid_proj)
self.control_model.forward = MethodType(
KolorsControlNet_forward, self.control_model)
return result
control_net.pre_run = MethodType(
KolorsControlLora_pre_run, control_net)
super_copy = ControlLora.copy
def KolorsControlLora_copy(self, *args, **kwargs):
c = super_copy(self, *args, **kwargs)
c.pre_run = MethodType(
KolorsControlLora_pre_run, c)
return c
control_net.copy = MethodType(
KolorsControlLora_copy, control_net)
control_net = copy.deepcopy(control_net)
elif isinstance(control_net, comfy.controlnet.ControlNet):
model_label_emb = model.model.diffusion_model.label_emb
control_net.control_model.label_emb = model_label_emb
setattr(control_net.control_model, "encoder_hid_proj",
model.model.diffusion_model.encoder_hid_proj)
control_net.control_model_wrapped = comfy.model_patcher.ModelPatcher(
control_net.control_model, load_device=control_net.load_device, offload_device=comfy.model_management.unet_offload_device())
super_forward = ControlNet.forward
def KolorsControlNet_forward(self, x, hint, timesteps, context, **kwargs):
with torch.cuda.amp.autocast(enabled=True):
context = self.encoder_hid_proj(context)
return super_forward(self, x, hint, timesteps, context, **kwargs)
control_net.control_model.forward = MethodType(
KolorsControlNet_forward, control_net.control_model)
else:
raise NotImplementedError(
f"Type {control_net} not supported for KolorsControlNetPatch")
return (control_net,)
def MZ_KolorsCLIPVisionLoader_call(kwargs):
import comfy.clip_vision
from . import hook_comfyui_kolors_v2
clip_name = kwargs.get("clip_name")
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
with hook_comfyui_kolors_v2.apply_kolors():
clip_vision = comfy.clip_vision.load(clip_path)
return (clip_vision,)
def MZ_ApplySDXLSamplingSettings_call(kwargs):
model = kwargs.get("model").clone()
import comfy.model_sampling
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
sampling_type = comfy.model_sampling.EPS
class SDXLSampling(sampling_base, sampling_type):
pass
model.model.model_config.sampling_settings["beta_schedule"] = "linear"
model.model.model_config.sampling_settings["linear_start"] = 0.00085
model.model.model_config.sampling_settings["linear_end"] = 0.012
model.model.model_config.sampling_settings["timesteps"] = 1000
model_sampling = SDXLSampling(model.model.model_config)
model.add_object_patch("model_sampling", model_sampling)
return (model,)
def MZ_ApplyCUDAGenerator_call(kwargs):
model = kwargs.get("model")
def prepare_noise(latent_image, seed, noise_inds=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.Generator(device="cuda").manual_seed(seed)
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cuda")
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype,
layout=latent_image.layout, generator=generator, device="cuda")
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
import comfy.sample
comfy.sample.prepare_noise = prepare_noise
return (model,)
|