Spaces:
Configuration error
Configuration error
File size: 2,645 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# ComfyUI wrapper for Kwai-Kolors
Rudimentary wrapper that runs Kwai-Kolors text2image pipeline using diffusers.
## Update - safetensors
Added alternative way to load the ChatGLM3 model from single safetensors file (the configs are included in this repo already).
Including already quantized models:

https://huggingface.co/Kijai/ChatGLM3-safetensors/upload/main
goes into:
`ComfyUI\models\LLM\checkpoints`


## Installation:
Clone this repository to 'ComfyUI/custom_nodes` folder.
Install the dependencies in requirements.txt, transformers version 4.38.0 minimum is required:
`pip install -r requirements.txt`
or if you use portable (run this in ComfyUI_windows_portable -folder):
`python_embedded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-KwaiKolorsWrapper\requirements.txt`
Models (fp16, 16.5GB) are automatically downloaded from https://huggingface.co/Kwai-Kolors/Kolors/tree/main
to `ComfyUI/models/diffusers/Kolors`
Model folder structure needs to be the following:
```
PS C:\ComfyUI_windows_portable\ComfyUI\models\diffusers\Kolors> tree /F
β model_index.json
β
ββββscheduler
β scheduler_config.json
β
ββββtext_encoder
β config.json
β pytorch_model-00001-of-00007.bin
β pytorch_model-00002-of-00007.bin
β pytorch_model-00003-of-00007.bin
β pytorch_model-00004-of-00007.bin
β pytorch_model-00005-of-00007.bin
β pytorch_model-00006-of-00007.bin
β pytorch_model-00007-of-00007.bin
β pytorch_model.bin.index.json
β tokenizer.model
β tokenizer_config.json
β vocab.txt
β
ββββunet
config.json
diffusion_pytorch_model.fp16.safetensors
```
To run this, the text enconder is what takes most of the VRAM, but can be quantized to fit approximately these amounts:
| Model | Size |
|--------|------|
| fp16 | ~13 GB|
| quant8 | ~8 GB |
| quant4 | ~4 GB |
After that, the sampling single image at 1024 can be expected to take similar amounts than SDXL. For VAE the base SDXL VAE is used.


|