Spaces:
Configuration error
Configuration error
File size: 18,620 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import torch
import os
import random
import re
import gc
import json
import psutil
import comfy.model_management as mm
from comfy.utils import ProgressBar, load_torch_file
import folder_paths
script_directory = os.path.dirname(os.path.abspath(__file__))
folder_paths.add_model_folder_path("llms", os.path.join(folder_paths.models_dir, "llms", "checkpoints"))
from .kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
from .kolors.models.modeling_chatglm import ChatGLMModel, ChatGLMConfig
from .kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import UNet2DConditionModel
from diffusers import (DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler
)
from contextlib import nullcontext
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
pass
from comfy.utils import ProgressBar
class DownloadAndLoadKolorsModel:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": (
[
'Kwai-Kolors/Kolors',
],
),
"precision": ([ 'fp16'],
{
"default": 'fp16'
}),
},
}
RETURN_TYPES = ("KOLORSMODEL",)
RETURN_NAMES = ("kolors_model",)
FUNCTION = "loadmodel"
CATEGORY = "KwaiKolorsWrapper"
def loadmodel(self, model, precision):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
pbar = ProgressBar(4)
model_name = model.rsplit('/', 1)[-1]
model_path = os.path.join(folder_paths.models_dir, "diffusers", model_name)
if not os.path.exists(model_path):
print(f"Downloading Kolor model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model,
allow_patterns=['*fp16.safetensors*', '*.json'],
ignore_patterns=['vae/*', 'text_encoder/*', 'tokenizer/*'],
local_dir=model_path,
local_dir_use_symlinks=False)
pbar.update(1)
ram_rss_start = psutil.Process().memory_info().rss
scheduler = EulerDiscreteScheduler.from_pretrained(model_path, subfolder= 'scheduler')
print(f'Load UNET...')
unet = UNet2DConditionModel.from_pretrained(model_path, subfolder= 'unet', variant="fp16", revision=None, low_cpu_mem_usage=True).to(dtype).eval()
ram_rss_end = psutil.Process().memory_info().rss
print(f'Kolors-unet: RAM allocated = {(ram_rss_end-ram_rss_start)/(1024*1024*1024):.3f}GB')
pipeline = StableDiffusionXLPipeline(
unet=unet,
scheduler=scheduler,
)
kolors_model = {
'pipeline': pipeline,
'dtype': dtype
}
return (kolors_model,)
class LoadChatGLM3:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"chatglm3_checkpoint": (folder_paths.get_filename_list("llms"),),
},
}
RETURN_TYPES = ("CHATGLM3MODEL",)
RETURN_NAMES = ("chatglm3_model",)
FUNCTION = "loadmodel"
CATEGORY = "KwaiKolorsWrapper"
def loadmodel(self, chatglm3_checkpoint):
device=mm.get_torch_device()
offload_device=mm.unet_offload_device()
print(f'chatglm3: device={device}, offload_device={offload_device}')
pbar = ProgressBar(2)
chatglm3_path = folder_paths.get_full_path("llms", chatglm3_checkpoint)
print("Load TEXT_ENCODER...")
text_encoder_config = os.path.join(script_directory, 'configs', 'text_encoder_config.json')
with open(text_encoder_config, 'r') as file:
config = json.load(file)
text_encoder_config = ChatGLMConfig(**config)
with (init_empty_weights() if is_accelerate_available else nullcontext()):
text_encoder = ChatGLMModel(text_encoder_config)
if '4bit' in chatglm3_checkpoint:
text_encoder.quantize(4)
elif '8bit' in chatglm3_checkpoint:
text_encoder.quantize(8)
text_encoder_sd = load_torch_file(chatglm3_path)
if is_accelerate_available:
for key in text_encoder_sd:
set_module_tensor_to_device(text_encoder, key, device=offload_device, value=text_encoder_sd[key])
else:
text_encoder.load_state_dict()
tokenizer_path = os.path.join(script_directory,'configs',"tokenizer")
tokenizer = ChatGLMTokenizer.from_pretrained(tokenizer_path)
pbar.update(1)
chatglm3_model = {
'text_encoder': text_encoder,
'tokenizer': tokenizer
}
return (chatglm3_model,)
class DownloadAndLoadChatGLM3:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"precision": ([ 'fp16', 'quant4', 'quant8'],
{
"default": 'fp16'
}),
},
}
RETURN_TYPES = ("CHATGLM3MODEL",)
RETURN_NAMES = ("chatglm3_model",)
FUNCTION = "loadmodel"
CATEGORY = "KwaiKolorsWrapper"
def loadmodel(self, precision):
pbar = ProgressBar(2)
model = "Kwai-Kolors/Kolors"
model_name = model.rsplit('/', 1)[-1]
model_path = os.path.join(folder_paths.models_dir, "diffusers", model_name)
text_encoder_path = os.path.join(model_path, "text_encoder")
if not os.path.exists(text_encoder_path):
print(f"Downloading ChatGLM3 to: {text_encoder_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model,
allow_patterns=['text_encoder/*'],
ignore_patterns=['*.py', '*.pyc'],
local_dir=model_path,
local_dir_use_symlinks=False)
pbar.update(1)
ram_rss_start = psutil.Process().memory_info().rss
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
print(f"Load TEXT_ENCODER..., {precision}, {offload_device}")
text_encoder = ChatGLMModel.from_pretrained(
text_encoder_path,
torch_dtype=torch.float16
).to(offload_device)
if precision == 'quant8':
text_encoder.quantize(8)
elif precision == 'quant4':
text_encoder.quantize(4)
#device_text = next(text_encoder.parameters()).device
#print(f'chatglm3: device={device_text}, torch_device={device}, offload_device={offload_device}')
tokenizer = ChatGLMTokenizer.from_pretrained(text_encoder_path)
pbar.update(1)
chatglm3_model = {
'text_encoder': text_encoder,
'tokenizer': tokenizer
}
ram_rss_end = psutil.Process().memory_info().rss
print(f'chatglm3: RAM allocated = {(ram_rss_end-ram_rss_start)/(1024*1024*1024):.3f}GB')
return (chatglm3_model,)
class KolorsTextEncode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"chatglm3_model": ("CHATGLM3MODEL", ),
"prompt": ("STRING", {"multiline": True, "default": "",}),
"negative_prompt": ("STRING", {"multiline": True, "default": "",}),
"num_images_per_prompt": ("INT", {"default": 1, "min": 1, "max": 128, "step": 1}),
},
}
RETURN_TYPES = ("KOLORS_EMBEDS",)
RETURN_NAMES =("kolors_embeds",)
FUNCTION = "encode"
CATEGORY = "KwaiKolorsWrapper"
def encode(self, chatglm3_model, prompt, negative_prompt, num_images_per_prompt):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.unload_all_models()
mm.soft_empty_cache()
# Function to randomly select an option from the brackets
def choose_random_option(match):
options = match.group(1).split('|')
return random.choice(options)
# Randomly choose between options in brackets for prompt and negative_prompt
prompt = re.sub(r'\{([^{}]*)\}', choose_random_option, prompt)
negative_prompt = re.sub(r'\{([^{}]*)\}', choose_random_option, negative_prompt)
if "|" in prompt:
prompt = prompt.split("|")
negative_prompt = [negative_prompt] * len(prompt) # Replicate negative_prompt to match length of prompt list
print(prompt)
do_classifier_free_guidance = True
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
# Define tokenizers and text encoders
tokenizer = chatglm3_model['tokenizer']
text_encoder = chatglm3_model['text_encoder']
text_encoder.to(device)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt",
).to(device)
output = text_encoder(
input_ids=text_inputs['input_ids'] ,
attention_mask=text_inputs['attention_mask'],
position_ids=text_inputs['position_ids'],
output_hidden_states=True)
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() # [batch_size, 77, 4096]
text_proj = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
uncond_tokens = []
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
).to(device)
output = text_encoder(
input_ids=uncond_input['input_ids'] ,
attention_mask=uncond_input['attention_mask'],
position_ids=uncond_input['position_ids'],
output_hidden_states=True)
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() # [batch_size, 77, 4096]
negative_text_proj = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
bs_embed = text_proj.shape[0]
text_proj = text_proj.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
negative_text_proj = negative_text_proj.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
text_encoder.to(offload_device)
mm.soft_empty_cache()
gc.collect()
kolors_embeds = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'pooled_prompt_embeds': text_proj,
'negative_pooled_prompt_embeds': negative_text_proj
}
return (kolors_embeds,)
class KolorsSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"kolors_model": ("KOLORSMODEL", ),
"kolors_embeds": ("KOLORS_EMBEDS", ),
"width": ("INT", {"default": 1024, "min": 64, "max": 2048, "step": 64}),
"height": ("INT", {"default": 1024, "min": 64, "max": 2048, "step": 64}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 25, "min": 1, "max": 200, "step": 1}),
"cfg": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 20.0, "step": 0.01}),
"scheduler": (
[
"EulerDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"DPMSolverMultistepScheduler",
"DPMSolverMultistepScheduler_SDE_karras",
"UniPCMultistepScheduler",
"DEISMultistepScheduler",
],
{
"default": 'EulerDiscreteScheduler'
}
),
},
"optional": {
"latent": ("LATENT", ),
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES =("latent",)
FUNCTION = "process"
CATEGORY = "KwaiKolorsWrapper"
def process(self, kolors_model, kolors_embeds, width, height, seed, steps, cfg, scheduler, latent=None, denoise_strength=1.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
vae_scaling_factor = 0.13025 #SDXL scaling factor
mm.soft_empty_cache()
gc.collect()
pipeline = kolors_model['pipeline']
scheduler_config = {
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"beta_end": 0.014,
"dynamic_thresholding_ratio": 0.995,
"num_train_timesteps": 1100,
"prediction_type": "epsilon",
"rescale_betas_zero_snr": False,
"steps_offset": 1,
"timestep_spacing": "leading",
"trained_betas": None,
}
if scheduler == "DPMSolverMultistepScheduler":
noise_scheduler = DPMSolverMultistepScheduler(**scheduler_config)
elif scheduler == "DPMSolverMultistepScheduler_SDE_karras":
scheduler_config.update({"algorithm_type": "sde-dpmsolver++"})
scheduler_config.update({"use_karras_sigmas": True})
noise_scheduler = DPMSolverMultistepScheduler(**scheduler_config)
elif scheduler == "DEISMultistepScheduler":
scheduler_config.pop("rescale_betas_zero_snr")
noise_scheduler = DEISMultistepScheduler(**scheduler_config)
elif scheduler == "EulerDiscreteScheduler":
scheduler_config.update({"interpolation_type": "linear"})
scheduler_config.pop("dynamic_thresholding_ratio")
noise_scheduler = EulerDiscreteScheduler(**scheduler_config)
elif scheduler == "EulerAncestralDiscreteScheduler":
scheduler_config.pop("dynamic_thresholding_ratio")
noise_scheduler = EulerAncestralDiscreteScheduler(**scheduler_config)
elif scheduler == "UniPCMultistepScheduler":
scheduler_config.pop("rescale_betas_zero_snr")
noise_scheduler = UniPCMultistepScheduler(**scheduler_config)
pipeline.scheduler = noise_scheduler
generator= torch.Generator(device).manual_seed(seed)
pipeline.unet.to(device)
if latent is not None:
samples_in = latent['samples']
samples_in = samples_in * vae_scaling_factor
samples_in = samples_in.to(pipeline.unet.dtype).to(device)
latent_out = pipeline(
prompt=None,
latents=samples_in if latent is not None else None,
prompt_embeds = kolors_embeds['prompt_embeds'],
pooled_prompt_embeds = kolors_embeds['pooled_prompt_embeds'],
negative_prompt_embeds = kolors_embeds['negative_prompt_embeds'],
negative_pooled_prompt_embeds = kolors_embeds['negative_pooled_prompt_embeds'],
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=cfg,
num_images_per_prompt=1,
generator= generator,
strength=denoise_strength,
).images
pipeline.unet.to(offload_device)
latent_out = latent_out / vae_scaling_factor
return ({'samples': latent_out},)
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadKolorsModel": DownloadAndLoadKolorsModel,
"DownloadAndLoadChatGLM3": DownloadAndLoadChatGLM3,
"KolorsSampler": KolorsSampler,
"KolorsTextEncode": KolorsTextEncode,
"LoadChatGLM3": LoadChatGLM3
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadKolorsModel": "(Down)load Kolors Model",
"DownloadAndLoadChatGLM3": "(Down)load ChatGLM3 Model",
"KolorsSampler": "Kolors Sampler",
"KolorsTextEncode": "Kolors Text Encode",
"LoadChatGLM3": "Load ChatGLM3 Model"
}
|