File size: 10,244 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import torch
import torch.nn as nn
import os
import numpy as np
from timm.models.layers import DropPath
from timm.models.vision_transformer import PatchEmbed, Mlp


from .utils import auto_grad_checkpoint, to_2tuple
from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, LabelEmbedder, FinalLayer


class PixArtBlock(nn.Module):
    """
    A PixArt block with adaptive layer norm (adaLN-single) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0, input_size=None, sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = AttentionKVCompress(
            hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
            qk_norm=qk_norm, **block_kwargs
        )
        self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # to be compatible with lower version pytorch
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
        self.sampling = sampling
        self.sr_ratio = sr_ratio

    def forward(self, x, y, t, mask=None, **kwargs):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
        x = x + self.cross_attn(x, y, mask)
        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))

        return x


### Core PixArt Model ###
class PixArt(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
            self,
            input_size=32,
            patch_size=2,
            in_channels=4,
            hidden_size=1152,
            depth=28,
            num_heads=16,
            mlp_ratio=4.0,
            class_dropout_prob=0.1,
            pred_sigma=True,
            drop_path: float = 0.,
            caption_channels=4096,
            pe_interpolation=1.0,
            pe_precision=None,
            config=None,
            model_max_length=120,
            qk_norm=False,
            kv_compress_config=None,
            **kwargs,
    ):
        super().__init__()
        self.pred_sigma = pred_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if pred_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pe_interpolation = pe_interpolation
        self.pe_precision = pe_precision
        self.depth = depth

        self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        num_patches = self.x_embedder.num_patches
        self.base_size = input_size // self.patch_size
        # Will use fixed sin-cos embedding:
        self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))

        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
            act_layer=approx_gelu, token_num=model_max_length
		)
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.kv_compress_config = kv_compress_config
        if kv_compress_config is None:
            self.kv_compress_config = {
                'sampling': None,
                'scale_factor': 1,
                'kv_compress_layer': [],
            }
        self.blocks = nn.ModuleList([
            PixArtBlock(
                hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
                input_size=(input_size // patch_size, input_size // patch_size),
                sampling=self.kv_compress_config['sampling'],
                sr_ratio=int(
                    self.kv_compress_config['scale_factor']
                ) if i in self.kv_compress_config['kv_compress_layer'] else 1,
                qk_norm=qk_norm,
            )
            for i in range(depth)
        ])
        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

    def forward_raw(self, x, t, y, mask=None, data_info=None):
        """
        Original forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        x = x.to(self.dtype)
        timestep = t.to(self.dtype)
        y = y.to(self.dtype)
        pos_embed = self.pos_embed.to(self.dtype)
        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep.to(x.dtype))  # (N, D)
        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, 1, L, D)
        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        for block in self.blocks:
            x = auto_grad_checkpoint(block, x, y, t0, y_lens)  # (N, T, D) #support grad checkpoint
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

    def forward(self, x, timesteps, context, y=None, **kwargs):
        """
        Forward pass that adapts comfy input to original forward function
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        timesteps: (N,) tensor of diffusion timesteps
        context: (N, 1, 120, C) conditioning
        y: extra conditioning.
        """
        ## Still accepts the input w/o that dim but returns garbage
        if len(context.shape) == 3:
            context = context.unsqueeze(1)

        ## run original forward pass
        out = self.forward_raw(
            x = x.to(self.dtype),
            t = timesteps.to(self.dtype),
            y = context.to(self.dtype),
        )

        ## only return EPS
        out = out.to(torch.float)
        eps, rest = out[:, :self.in_channels], out[:, self.in_channels:]
        return eps

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
        return imgs


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, int):
        grid_size = to_2tuple(grid_size)
    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0]/base_size) / pe_interpolation
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1]/base_size) / pe_interpolation
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed.astype(np.float32)


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb