File size: 11,036 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import torch
import torch.nn as nn
from tqdm import tqdm
from timm.models.layers import DropPath
from timm.models.vision_transformer import Mlp

from .utils import auto_grad_checkpoint, to_2tuple
from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, SizeEmbedder
from .PixArt import PixArt, get_2d_sincos_pos_embed


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(
            self,
            patch_size=16,
            in_chans=3,
            embed_dim=768,
            norm_layer=None,
            flatten=True,
            bias=True,
    ):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size
        self.flatten = flatten
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x


class PixArtMSBlock(nn.Module):
    """
    A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
                 sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs):
        super().__init__()
        self.hidden_size = hidden_size
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = AttentionKVCompress(
            hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
            qk_norm=qk_norm, **block_kwargs
        )
        self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # to be compatible with lower version pytorch
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)

    def forward(self, x, y, t, mask=None, HW=None, **kwargs):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
        x = x + self.cross_attn(x, y, mask)
        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))

        return x


### Core PixArt Model ###
class PixArtMS(PixArt):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
            self,
            input_size=32,
            patch_size=2,
            in_channels=4,
            hidden_size=1152,
            depth=28,
            num_heads=16,
            mlp_ratio=4.0,
            class_dropout_prob=0.1,
            learn_sigma=True,
            pred_sigma=True,
            drop_path: float = 0.,
            caption_channels=4096,
            pe_interpolation=None,
            pe_precision=None,
            config=None,
            model_max_length=120,
            micro_condition=True,
            qk_norm=False,
            kv_compress_config=None,
            **kwargs,
    ):
        super().__init__(
            input_size=input_size,
            patch_size=patch_size,
            in_channels=in_channels,
            hidden_size=hidden_size,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            class_dropout_prob=class_dropout_prob,
            learn_sigma=learn_sigma,
            pred_sigma=pred_sigma,
            drop_path=drop_path,
            pe_interpolation=pe_interpolation,
            config=config,
            model_max_length=model_max_length,
            qk_norm=qk_norm,
            kv_compress_config=kv_compress_config,
            **kwargs,
        )
        self.dtype = torch.get_default_dtype()
        self.h = self.w = 0
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )
        self.x_embedder = PatchEmbed(patch_size, in_channels, hidden_size, bias=True)
        self.y_embedder = CaptionEmbedder(in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length)
        self.micro_conditioning = micro_condition
        if self.micro_conditioning:
            self.csize_embedder = SizeEmbedder(hidden_size//3)  # c_size embed
            self.ar_embedder = SizeEmbedder(hidden_size//3)     # aspect ratio embed
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        if kv_compress_config is None:
            kv_compress_config = {
                'sampling': None,
                'scale_factor': 1,
                'kv_compress_layer': [],
            }
        self.blocks = nn.ModuleList([
            PixArtMSBlock(
                hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
                input_size=(input_size // patch_size, input_size // patch_size),
                sampling=kv_compress_config['sampling'],
                sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
                qk_norm=qk_norm,
            )
            for i in range(depth)
        ])
        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

    def forward_raw(self, x, t, y, mask=None, data_info=None, **kwargs):
        """
        Original forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        bs = x.shape[0]
        x = x.to(self.dtype)
        timestep = t.to(self.dtype)
        y = y.to(self.dtype)
        
        pe_interpolation = self.pe_interpolation
        if pe_interpolation is None or self.pe_precision is not None:
            # calculate pe_interpolation on-the-fly
            pe_interpolation = round((x.shape[-1]+x.shape[-2])/2.0 / (512/8.0), self.pe_precision or 0)

        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        pos_embed = torch.from_numpy(
            get_2d_sincos_pos_embed(
                self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=pe_interpolation,
                base_size=self.base_size
            )
        ).unsqueeze(0).to(device=x.device, dtype=self.dtype)

        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep)  # (N, D)

        if self.micro_conditioning:
            c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
            csize = self.csize_embedder(c_size, bs)  # (N, D)
            ar = self.ar_embedder(ar, bs)  # (N, D)
            t = t + torch.cat([csize, ar], dim=1)

        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, D)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        for block in self.blocks:
            x = auto_grad_checkpoint(block, x, y, t0, y_lens, (self.h, self.w), **kwargs)  # (N, T, D) #support grad checkpoint

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        
        return x

    def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, **kwargs):
        """
        Forward pass that adapts comfy input to original forward function
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        timesteps: (N,) tensor of diffusion timesteps
        context: (N, 1, 120, C) conditioning
        img_hw: height|width conditioning
        aspect_ratio: aspect ratio conditioning
        """
        ## size/ar from cond with fallback based on the latent image shape.
        bs = x.shape[0]
        data_info = {}
        if img_hw is None:
            data_info["img_hw"] = torch.tensor(
                [[x.shape[2]*8, x.shape[3]*8]],
                dtype=self.dtype,
                device=x.device
            ).repeat(bs, 1)
        else:
            data_info["img_hw"] = img_hw.to(dtype=x.dtype, device=x.device)
        if aspect_ratio is None or True:
            data_info["aspect_ratio"] = torch.tensor(
                [[x.shape[2]/x.shape[3]]],
                dtype=self.dtype,
                device=x.device
            ).repeat(bs, 1)
        else:
            data_info["aspect_ratio"] = aspect_ratio.to(dtype=x.dtype, device=x.device)

        ## Still accepts the input w/o that dim but returns garbage
        if len(context.shape) == 3:
            context = context.unsqueeze(1)

        ## run original forward pass
        out = self.forward_raw(
            x = x.to(self.dtype),
            t = timesteps.to(self.dtype),
            y = context.to(self.dtype),
            data_info=data_info,
        )

        ## only return EPS
        out = out.to(torch.float)
        eps, rest = out[:, :self.in_channels], out[:, self.in_channels:]
        return eps

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        assert self.h * self.w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
        return imgs