File size: 7,326 Bytes
8866644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import json
import torch
import folder_paths

from comfy import utils
from .conf import pixart_conf, pixart_res
from .lora import load_pixart_lora
from .loader import load_pixart

class PixArtCheckpointLoader:
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
				"model": (list(pixart_conf.keys()),),
			}
		}
	RETURN_TYPES = ("MODEL",)
	RETURN_NAMES = ("model",)
	FUNCTION = "load_checkpoint"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt Checkpoint Loader"

	def load_checkpoint(self, ckpt_name, model):
		ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
		model_conf = pixart_conf[model]
		model = load_pixart(
			model_path = ckpt_path,
			model_conf = model_conf,
		)
		return (model,)

class PixArtCheckpointLoaderSimple(PixArtCheckpointLoader):
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
			}
		}
	TITLE = "PixArt Checkpoint Loader (auto)"

	def load_checkpoint(self, ckpt_name):
		ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
		model = load_pixart(model_path=ckpt_path)
		return (model,)

class PixArtResolutionSelect():
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"model": (list(pixart_res.keys()),),
				# keys are the same for both
				"ratio": (list(pixart_res["PixArtMS_XL_2"].keys()),{"default":"1.00"}),
			}
		}
	RETURN_TYPES = ("INT","INT")
	RETURN_NAMES = ("width","height")
	FUNCTION = "get_res"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt Resolution Select"

	def get_res(self, model, ratio):
		width, height = pixart_res[model][ratio]
		return (width,height)

class PixArtLoraLoader:
	def __init__(self):
		self.loaded_lora = None

	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"model": ("MODEL",),
				"lora_name": (folder_paths.get_filename_list("loras"), ),
				"strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
			}
		}
	RETURN_TYPES = ("MODEL",)
	FUNCTION = "load_lora"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt Load LoRA"

	def load_lora(self, model, lora_name, strength,):
		if strength == 0:
			return (model)

		lora_path = folder_paths.get_full_path("loras", lora_name)
		lora = None
		if self.loaded_lora is not None:
			if self.loaded_lora[0] == lora_path:
				lora = self.loaded_lora[1]
			else:
				temp = self.loaded_lora
				self.loaded_lora = None
				del temp

		if lora is None:
			lora = utils.load_torch_file(lora_path, safe_load=True)
			self.loaded_lora = (lora_path, lora)

		model_lora = load_pixart_lora(model, lora, lora_path, strength,)
		return (model_lora,)

class PixArtResolutionCond:
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"cond": ("CONDITIONING", ),
				"width": ("INT", {"default": 1024.0, "min": 0, "max": 8192}),
				"height": ("INT", {"default": 1024.0, "min": 0, "max": 8192}),
			}
		}

	RETURN_TYPES = ("CONDITIONING",)
	RETURN_NAMES = ("cond",)
	FUNCTION = "add_cond"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt Resolution Conditioning"
	
	def add_cond(self, cond, width, height):
		for c in range(len(cond)):
			cond[c][1].update({
				"img_hw": [[height, width]],
				"aspect_ratio": [[height/width]],
			})
		return (cond,)

class PixArtControlNetCond:
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"cond": ("CONDITIONING",),
				"latent": ("LATENT",),
				# "image": ("IMAGE",),
				# "vae": ("VAE",),
				# "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
			}
		}

	RETURN_TYPES = ("CONDITIONING",)
	RETURN_NAMES = ("cond",)
	FUNCTION = "add_cond"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt ControlNet Conditioning"

	def add_cond(self, cond, latent):
		for c in range(len(cond)):
			cond[c][1]["cn_hint"] = latent["samples"] * 0.18215
		return (cond,)

class PixArtT5TextEncode:
	"""
	Reference code, mostly to verify compatibility.
	 Once everything works, this should instead inherit from the
	 T5 text encode node and simply add the extra conds (res/ar).
	"""
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"text": ("STRING", {"multiline": True}),
				"T5": ("T5",),
			}
		}

	RETURN_TYPES = ("CONDITIONING",)
	FUNCTION = "encode"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt T5 Text Encode [Reference]"

	def mask_feature(self, emb, mask):
		if emb.shape[0] == 1:
			keep_index = mask.sum().item()
			return emb[:, :, :keep_index, :], keep_index
		else:
			masked_feature = emb * mask[:, None, :, None]
			return masked_feature, emb.shape[2]

	def encode(self, text, T5):
		text = text.lower().strip()
		tokenizer_out = T5.tokenizer.tokenizer(
			text,
			max_length            = 120,
			padding               = 'max_length',
			truncation            = True,
			return_attention_mask = True,
			add_special_tokens    = True,
			return_tensors        = 'pt'
		)
		tokens = tokenizer_out["input_ids"]
		mask = tokenizer_out["attention_mask"]
		embs = T5.cond_stage_model.transformer(
			input_ids      = tokens.to(T5.load_device),
			attention_mask = mask.to(T5.load_device),
		)['last_hidden_state'].float()[:, None]
		masked_embs, keep_index = self.mask_feature(
			embs.detach().to("cpu"),
			mask.detach().to("cpu")
		)
		masked_embs = masked_embs.squeeze(0) # match CLIP/internal
		print("Encoded T5:", masked_embs.shape)
		return ([[masked_embs, {}]], )

class PixArtT5FromSD3CLIP:
	"""
	Split the T5 text encoder away from SD3
	"""
	@classmethod
	def INPUT_TYPES(s):
		return {
			"required": {
				"sd3_clip": ("CLIP",),
				"padding": ("INT", {"default": 1, "min": 1, "max": 300}),
			}
		}

	RETURN_TYPES = ("CLIP",)
	RETURN_NAMES = ("t5",)
	FUNCTION = "split"
	CATEGORY = "ExtraModels/PixArt"
	TITLE = "PixArt T5 from SD3 CLIP"

	def split(self, sd3_clip, padding):
		try:
			from comfy.text_encoders.sd3_clip import SD3Tokenizer, SD3ClipModel
		except ImportError:
			# fallback for older ComfyUI versions
			from comfy.sd3_clip import SD3Tokenizer, SD3ClipModel
		import copy
	
		clip = sd3_clip.clone()
		assert clip.cond_stage_model.t5xxl is not None, "CLIP must have T5 loaded!"

		# remove transformer
		transformer = clip.cond_stage_model.t5xxl.transformer
		clip.cond_stage_model.t5xxl.transformer = None

		# clone object
		tmp = SD3ClipModel(clip_l=False, clip_g=False, t5=False)
		tmp.t5xxl = copy.deepcopy(clip.cond_stage_model.t5xxl)
		# put transformer back
		clip.cond_stage_model.t5xxl.transformer = transformer
		tmp.t5xxl.transformer = transformer

		# override special tokens
		tmp.t5xxl.special_tokens = copy.deepcopy(clip.cond_stage_model.t5xxl.special_tokens)
		tmp.t5xxl.special_tokens.pop("end") # make sure empty tokens match

		# tokenizer
		tok = SD3Tokenizer()
		tok.t5xxl.min_length = padding
		
		clip.cond_stage_model = tmp
		clip.tokenizer = tok

		return (clip, )

NODE_CLASS_MAPPINGS = {
	"PixArtCheckpointLoader" : PixArtCheckpointLoader,
	"PixArtCheckpointLoaderSimple" : PixArtCheckpointLoaderSimple,
	"PixArtResolutionSelect" : PixArtResolutionSelect,
	"PixArtLoraLoader" : PixArtLoraLoader,
	"PixArtT5TextEncode" : PixArtT5TextEncode,
	"PixArtResolutionCond" : PixArtResolutionCond,
	"PixArtControlNetCond" : PixArtControlNetCond,
	"PixArtT5FromSD3CLIP": PixArtT5FromSD3CLIP,
}