Spaces:
Configuration error
Configuration error
File size: 7,326 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
import json
import torch
import folder_paths
from comfy import utils
from .conf import pixart_conf, pixart_res
from .lora import load_pixart_lora
from .loader import load_pixart
class PixArtCheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
"model": (list(pixart_conf.keys()),),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "load_checkpoint"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt Checkpoint Loader"
def load_checkpoint(self, ckpt_name, model):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
model_conf = pixart_conf[model]
model = load_pixart(
model_path = ckpt_path,
model_conf = model_conf,
)
return (model,)
class PixArtCheckpointLoaderSimple(PixArtCheckpointLoader):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
}
}
TITLE = "PixArt Checkpoint Loader (auto)"
def load_checkpoint(self, ckpt_name):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
model = load_pixart(model_path=ckpt_path)
return (model,)
class PixArtResolutionSelect():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (list(pixart_res.keys()),),
# keys are the same for both
"ratio": (list(pixart_res["PixArtMS_XL_2"].keys()),{"default":"1.00"}),
}
}
RETURN_TYPES = ("INT","INT")
RETURN_NAMES = ("width","height")
FUNCTION = "get_res"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt Resolution Select"
def get_res(self, model, ratio):
width, height = pixart_res[model][ratio]
return (width,height)
class PixArtLoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"lora_name": (folder_paths.get_filename_list("loras"), ),
"strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_lora"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt Load LoRA"
def load_lora(self, model, lora_name, strength,):
if strength == 0:
return (model)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora = load_pixart_lora(model, lora, lora_path, strength,)
return (model_lora,)
class PixArtResolutionCond:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cond": ("CONDITIONING", ),
"width": ("INT", {"default": 1024.0, "min": 0, "max": 8192}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": 8192}),
}
}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("cond",)
FUNCTION = "add_cond"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt Resolution Conditioning"
def add_cond(self, cond, width, height):
for c in range(len(cond)):
cond[c][1].update({
"img_hw": [[height, width]],
"aspect_ratio": [[height/width]],
})
return (cond,)
class PixArtControlNetCond:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cond": ("CONDITIONING",),
"latent": ("LATENT",),
# "image": ("IMAGE",),
# "vae": ("VAE",),
# "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
}
}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("cond",)
FUNCTION = "add_cond"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt ControlNet Conditioning"
def add_cond(self, cond, latent):
for c in range(len(cond)):
cond[c][1]["cn_hint"] = latent["samples"] * 0.18215
return (cond,)
class PixArtT5TextEncode:
"""
Reference code, mostly to verify compatibility.
Once everything works, this should instead inherit from the
T5 text encode node and simply add the extra conds (res/ar).
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True}),
"T5": ("T5",),
}
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt T5 Text Encode [Reference]"
def mask_feature(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
def encode(self, text, T5):
text = text.lower().strip()
tokenizer_out = T5.tokenizer.tokenizer(
text,
max_length = 120,
padding = 'max_length',
truncation = True,
return_attention_mask = True,
add_special_tokens = True,
return_tensors = 'pt'
)
tokens = tokenizer_out["input_ids"]
mask = tokenizer_out["attention_mask"]
embs = T5.cond_stage_model.transformer(
input_ids = tokens.to(T5.load_device),
attention_mask = mask.to(T5.load_device),
)['last_hidden_state'].float()[:, None]
masked_embs, keep_index = self.mask_feature(
embs.detach().to("cpu"),
mask.detach().to("cpu")
)
masked_embs = masked_embs.squeeze(0) # match CLIP/internal
print("Encoded T5:", masked_embs.shape)
return ([[masked_embs, {}]], )
class PixArtT5FromSD3CLIP:
"""
Split the T5 text encoder away from SD3
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_clip": ("CLIP",),
"padding": ("INT", {"default": 1, "min": 1, "max": 300}),
}
}
RETURN_TYPES = ("CLIP",)
RETURN_NAMES = ("t5",)
FUNCTION = "split"
CATEGORY = "ExtraModels/PixArt"
TITLE = "PixArt T5 from SD3 CLIP"
def split(self, sd3_clip, padding):
try:
from comfy.text_encoders.sd3_clip import SD3Tokenizer, SD3ClipModel
except ImportError:
# fallback for older ComfyUI versions
from comfy.sd3_clip import SD3Tokenizer, SD3ClipModel
import copy
clip = sd3_clip.clone()
assert clip.cond_stage_model.t5xxl is not None, "CLIP must have T5 loaded!"
# remove transformer
transformer = clip.cond_stage_model.t5xxl.transformer
clip.cond_stage_model.t5xxl.transformer = None
# clone object
tmp = SD3ClipModel(clip_l=False, clip_g=False, t5=False)
tmp.t5xxl = copy.deepcopy(clip.cond_stage_model.t5xxl)
# put transformer back
clip.cond_stage_model.t5xxl.transformer = transformer
tmp.t5xxl.transformer = transformer
# override special tokens
tmp.t5xxl.special_tokens = copy.deepcopy(clip.cond_stage_model.t5xxl.special_tokens)
tmp.t5xxl.special_tokens.pop("end") # make sure empty tokens match
# tokenizer
tok = SD3Tokenizer()
tok.t5xxl.min_length = padding
clip.cond_stage_model = tmp
clip.tokenizer = tok
return (clip, )
NODE_CLASS_MAPPINGS = {
"PixArtCheckpointLoader" : PixArtCheckpointLoader,
"PixArtCheckpointLoaderSimple" : PixArtCheckpointLoaderSimple,
"PixArtResolutionSelect" : PixArtResolutionSelect,
"PixArtLoraLoader" : PixArtLoraLoader,
"PixArtT5TextEncode" : PixArtT5TextEncode,
"PixArtResolutionCond" : PixArtResolutionCond,
"PixArtControlNetCond" : PixArtControlNetCond,
"PixArtT5FromSD3CLIP": PixArtT5FromSD3CLIP,
}
|