File size: 34,463 Bytes
aebc1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
import os
import json
from . import utils

default_models_info = {
    "checkpoints/Alternative/hunyuan_dit_1.2.safetensors": {
        "size": 8240228270,
        "hash": "4fb84f84079cda457d171b3c6b15d1be95b5a3e5d9825703951a99ddf92d1787",
        "muid": "8c4c0098ac"
    },
    "checkpoints/Alternative/playground-v2.5-1024px.safetensors": {
        "size": 6938040576,
        "hash": "bcaa7dd6780974f000b17b5a6c63e6f867a75c51ffa85c67d6b196882c69b992",
        "muid": "d0e21c789d50"
    },
    "checkpoints/albedobaseXL_v21.safetensors": {
        "size": 6938041042,
        "hash": "1718b5bb2da1ef4815fee8af8a7fc2fa8ab8f467b279eded4d991ea0cce59a6d",
        "muid": "acf28f1aeb42"
    },
    "checkpoints/animaPencilXL_v310.safetensors": {
        "size": 6938040682,
        "hash": "67b97ee6eec64abf0cb73c2284a0afecdd8e205a87a3622c2c23231e25e29b5b",
        "muid": "2def60f4b273"
    },
    "checkpoints/animaPencilXL_v500.safetensors": {
        "size": 6938041144,
        "hash": "896faa18cd6852ccf977e2dec76191c38f256d031204e233cb3ed76f6088d55b",
        "muid": "239e9199aa"
    },
    "checkpoints/FluxDev/flux1-dev.safetensors": {
        "size": 23802932552,
        "hash": "4610115bb0c89560703c892c59ac2742fa821e60ef5871b33493ba544683abd7",
        "muid": "2f3c5caac0"
    },
    "checkpoints/FluxDev/flux1-dev-fp8.safetensors": {
        "size": 17246524772,
        "hash": "8e91b68084b53a7fc44ed2a3756d821e355ac1a7b6fe29be760c1db532f3d88a",
        "muid": "7f89b4dd65"
    },
    "checkpoints/FluxDev/flux1-dev-bnb-nf4.safetensors": {
        "size": 11489884113,
        "hash": "c5e25d12d720e30a277598ce9ded9db406ee54f63419fe0c801b283d4ea146e2",
        "muid": "6487417fee"
    },
    "checkpoints/FluxDev/flux1-dev-bnb-nf4-v2.safetensors": {
        "size": 12044280207,
        "hash": "fef37763b8f2c8cc3463139bbb6d91aa517c605b654d4e5c540de52813f30306",
        "muid": "8c53267ff9"
    },
    "checkpoints/FluxDev/flux-hyp8-Q5_K_M.gguf": {
        "size": 8421981408,
        "hash": "a0dac309ffb497fde0d1bbfa0291f5371d0d05c66173df830318bc475777c68a",
        "muid": "a0dac309ff"
    },
    "checkpoints/FluxDev/fluxunchained-dev-Q5_K_M.gguf": {
        "size": 8428152160,
        "hash": "ee5df99febf1aebd63137672d3396407a6e89f771ca9e83bc13c475c5d57a521",
        "muid": "ee5df99feb"
    },
    "checkpoints/FluxSchnell/flux1-schnell.safetensors": {
        "size": 23782506688,
        "hash": "9403429e0052277ac2a87ad800adece5481eecefd9ed334e1f348723621d2a0a",
        "muid": "d314672fc6"
    },
    "checkpoints/FluxSchnell/flux1-schnell-fp8.safetensors": {
        "size": 17236328572,
        "hash": "ead426278b49030e9da5df862994f25ce94ab2ee4df38b556ddddb3db093bf72",
        "muid": "8f031d049d"
    },
    "checkpoints/FLUX.1-schnell-dev-merged.safetensors": {
        "size": 23802903480,
        "hash": "0dc649761fba58625f57f596738e76422df9424c4c8801ca70c53ad6998c905b",
        "muid": "6661979a94"
    },
    "checkpoints/FluxSchnell/flux1-schnell-bnb-nf4.safetensors": {
        "size": 11484555394,
        "hash": "e6cba6afca8b2f5599879111e1a5f3dabebe69bcc3ee4a6af46807447adc6d09",
        "muid": "0eaea6dc0d"
    },
    "checkpoints/Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors": {
        "size": 7105348188,
        "hash": "c9e3e68f89b8e38689e1097d4be4573cf308de4e3fd044c64ca697bdb4aa8bca",
        "muid": "393f61fcec"
    },
    "checkpoints/Pony/ponyDiffusionV6XL.safetensors": {
        "size": 6938041050,
        "hash": "67ab2fd8ec439a89b3fedb15cc65f54336af163c7eb5e4f2acc98f090a29b0b3",
        "muid": "e023c14343"
    },
    "checkpoints/realisticStockPhoto_v20.safetensors": {
        "size": 6938054242,
        "hash": "f99f3dec38a09b4834a4a073bdc45aabd42b422b4d327f5e8001afcb5ffb5f45",
        "muid": "5d99d6fc4fbf"
    },
    "checkpoints/realisticVisionV60B1_v51VAE.safetensors": {
        "size": 2132625894,
        "hash": "15012c538f503ce2ebfc2c8547b268c75ccdaff7a281db55399940ff1d70e21d",
        "muid": "5da06f78b3c8"
    },
    "checkpoints/SD3x/sd3_medium_incl_clips.safetensors": {
        "size": 5973224240,
        "hash": "3bb7f21bc5fb450220f4eb78a2f276b15422309d5166a4bdeb8c3b763a3a0581",
        "muid": "bb3cbb3221ef"
    },
    "checkpoints/SD3x/sd3_medium_incl_clips_t5xxlfp16.safetensors": {
        "size": 15761074532,
        "hash": "69a950c5d143ce782a7423c532c8a12b75da6a37b0e6f26a322acf4e76208912",
        "muid": "c3a45b17d217"
    },
    "checkpoints/SD3x/sd3_medium_incl_clips_t5xxlfp8.safetensors": {
        "size": 10867168284,
        "hash": "92db4295e9c9ab8401ef60566d975656a35b0bd0f6d9ce0d083725171f7b3174",
        "muid": "41d49489bc24"
    },
    "checkpoints/sd_xl_base_1.0_0.9vae.safetensors": {
        "size": 6938078334,
        "hash": "e6bb9ea85bbf7bf6478a7c6d18b71246f22e95d41bcdd80ed40aa212c33cfeff",
        "muid": "5e756477ea9d"
    },
    "checkpoints/sd_xl_refiner_1.0_0.9vae.safetensors": {
        "size": 6075981930,
        "hash": "8d0ce6c016004cbdacd50f937dad381d8c396628d621a7f97191470532780164",
        "muid": "bd66e233fe56"
    },
    "loras/FilmVelvia3.safetensors": {
        "size": 151108832,
        "hash": "ac8b0e4aa77be4d8b83da9bafe0134a2e36504c9b5263a7030394cffe4f7003a",
        "muid": "6e93473d6228"
    },
    "loras/Hyper-SDXL-8steps-lora.safetensors": {
        "size": 787359648,
        "hash": "ca689190e8c46038550384b5675488526cfe5a40d35f82b27acb75c100f417c1",
        "muid": "4f494295ed"
    },
    "loras/ip-adapter-faceid-plusv2_sdxl_lora.safetensors": {
        "size": 371842896,
        "hash": "f24b4bb2dad6638a09c00f151cde84991baf374409385bcbab53c1871a30cb7b",
        "muid": "13623d29c464"
    },
    "loras/sd_xl_offset_example-lora_1.0.safetensors": {
        "size": 49553604,
        "hash": "4852686128f953d0277d0793e2f0335352f96a919c9c16a09787d77f55cbdf6f",
        "muid": "8e3e833226b3"
    },
    "loras/SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors": {
        "size": 912593164,
        "hash": "9e2a98e1f27dbdbb0bda11523dee3444df099599bff7471c6e557f6ad55f27eb",
        "muid": "b39d197db0"
    },
    "loras/sdxl_hyper_sd_4step_lora.safetensors": {
        "size": 787359648,
        "hash": "12f81a27d00a751a40d68fd15597091896c5a90f3bd632fb6c475607cbdad76e",
        "muid": "1c88f7295856"
    },
    "loras/sdxl_lightning_4step_lora.safetensors": {
        "size": 393854592,
        "hash": "bf56cf2657efb15e465d81402ed481d1e11c4677e4bcce1bc11fe71ad8506b79",
        "muid": "1c32bdb07a7c"
    },
    "embeddings/unaestheticXLhk1.safetensors": {
        "size": 33296,
        "hash": "ca29d24a64c1801efc82f8f4d05d98308e5b6c51c15d156fb61ac074f24f87ce",
        "muid": "63578af5d493"
    },
    "embeddings/unaestheticXLv31.safetensors": {
        "size": 33296,
        "hash": "75fa9a0423a19c56ccaaea3b985b4999408b530585eca3f6108685c0007e5b2e",
        "muid": "a20bca3b2146"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00001-of-00007.bin": {
        "size": 1827781090,
        "hash": "b6a6388dae55b598efe76c704e7f017bd84e6f6213466b7686a8f8326f78ab05",
        "muid": "b6a6388dae"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00002-of-00007.bin": {
        "size": 1968299480,
        "hash": "2f96bef324acb5c3fe06b7a80f84272fe064d0327cbf14eddfae7af0d665a6ac",
        "muid": "2f96bef324"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00003-of-00007.bin": {
        "size": 1927415036,
        "hash": "2400101255213250d9df716f778b7d2325f2fa4a8acaedee788338fceee5b27e",
        "muid": "2400101255"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00004-of-00007.bin": {
        "size": 1815225998,
        "hash": "472567c1b0e448a19171fbb5b3dab5670426d0a5dfdfd2c3a87a60bb1f96037d",
        "muid": "472567c1b0"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00005-of-00007.bin": {
        "size": 1968299544,
        "hash": "ef2aea78fa386168958e5ba42ecf09cbb567ed3e77ce2be990d556b84081e2b9",
        "muid": "ef2aea78fa"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00006-of-00007.bin": {
        "size": 1927415036,
        "hash": "35191adf21a1ab632c2b175fcbb6c27601150026cb1ed5d602938d825954526f",
        "muid": "35191adf21"
    },
    "diffusers/Kolors/text_encoder/pytorch_model-00007-of-00007.bin": {
        "size": 1052808542,
        "hash": "b7cdaa9b8ed183284905c49d19bf42360037fdf2f95acb3093039d3c3a459261",
        "muid": "b7cdaa9b8e"
    },
    "diffusers/Kolors/unet/diffusion_pytorch_model.fp16.safetensors": {
        "size": 5159140240,
        "hash": "425ff1dcbe3a70ac13d3afdd69bd4e3176b0c3260722527c80b210f11d2d966c",
        "muid": "9c8f088e4c"
    },
    "diffusers/Kolors/vae/diffusion_pytorch_model.fp16.safetensors": {
        "size": 167335342,
        "hash": "bcb60880a46b63dea58e9bc591abe15f8350bde47b405f9c38f4be70c6161e68",
        "muid": "345f7343ee"
    },
    "DIFFUSERS/Kolors": {
        "size": 20054,
        "hash": "2eff895bdad33abb2f647c35ccb0c2d70173031effa4f126b335a815442af1e3",
        "muid": "2eff895bda"
    },
    "controlnet/control-lora-canny-rank128.safetensors": {
        "size": 395733680,
        "hash": "56389dbb245ca44de91d662529bd4298abc55ce2318f60bc19454fb72ff68247",
        "muid": "44f83205f6"
    },
    "controlnet/detection_Resnet50_Final.pth": {
        "size": 109497761,
        "hash": "6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d",
        "muid": "6d1de9c294"
    },
    "controlnet/fooocus_ip_negative.safetensors": {
        "size": 65616,
        "hash": "d7caedfb46780825895718c7c8e9ee077e675c935ddfcf272f1c01a4fc8ea72d",
        "muid": "4682603510"
    },
    "controlnet/fooocus_xl_cpds_128.safetensors": {
        "size": 395706528,
        "hash": "eec3fd8209a65b41341ea9f415de66909c97b30fb4d20965b3304e8e5251c2f1",
        "muid": "aa82117d38"
    },
    "controlnet/ip-adapter-plus-face_sdxl_vit-h.bin": {
        "size": 1013454761,
        "hash": "50e886d82940b3c5873d80c2b06d8a4b0d0fccec70bc44fd53f16ac3cfd7fc36",
        "muid": "50e886d829"
    },
    "controlnet/ip-adapter-plus_sdxl_vit-h.bin": {
        "size": 1013454427,
        "hash": "ec70edb7cc8e769c9388d94eeaea3e4526352c9fae793a608782d1d8951fde90",
        "muid": "ec70edb7cc"
    },
    "controlnet/parsing_bisenet.pth": {
        "size": 53289463,
        "hash": "468e13ca13a9b43cc0881a9f99083a430e9c0a38abd935431d1c28ee94b26567",
        "muid": "468e13ca13"
    },
    "controlnet/parsing_parsenet.pth": {
        "size": 85331193,
        "hash": "3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2",
        "muid": "3d558d8d0e"
    },
    "inpaint/fooocus_inpaint_head.pth": {
        "size": 52602,
        "hash": "32f7f838e0c6d8f13437ba8411e77a4688d77a2e34df8857e4ef4d51f6b97692",
        "muid": "32f7f838e0"
    },
    "inpaint/groundingdino_swint_ogc.pth": {
        "size": 693997677,
        "hash": "3b3ca2563c77c69f651d7bd133e97139c186df06231157a64c507099c52bc799",
        "muid": "3b3ca2563c"
    },
    "inpaint/sam_vit_b_01ec64.pth": {
        "size": 375042383,
        "hash": "ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912",
        "muid": "ec2df62732"
    },
    "inpaint/sam_vit_h_4b8939.pth": {
        "size": 2564550879,
        "hash": "a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e",
        "muid": "a7bf3b02f3"
    },
    "inpaint/sam_vit_l_0b3195.pth": {
        "size": 1249524607,
        "hash": "3adcc4315b642a4d2101128f611684e8734c41232a17c648ed1693702a49a622",
        "muid": "3adcc4315b"
    },
    "unet/iclight_sd15_fbc_unet_ldm.safetensors": {
        "size": 1719167896,
        "hash": "97a662b8076504e0abad3b3a20b0e91d3312f2a5f19ffcef9059dab6d6679700",
        "muid": "4019c0f83d"
    },
    "unet/iclight_sd15_fc_unet_ldm.safetensors": {
        "size": 1719144856,
        "hash": "9f91f1fc8ad2a2073c5a605fcd70cc70b2e7d2321b30aadca2a247d6490cd780",
        "muid": "f220618ed6"
    },
    "unet/kolors_unet_fp16.safetensors": {
        "size": 5159140240,
        "hash": "425ff1dcbe3a70ac13d3afdd69bd4e3176b0c3260722527c80b210f11d2d966c",
        "muid": "9c8f088e4c"
    },
    "llms/Helsinki-NLP/opus-mt-zh-en/pytorch_model.bin": {
        "size": 312087009,
        "hash": "9d8ceb91d103ef89400c9d9d62328b4858743cf8924878aee3b8afc594242ce0",
        "muid": "9d8ceb91d1"
    },
    "llms/bert-base-uncased/model.safetensors": {
        "size": 440449768,
        "hash": "68d45e234eb4a928074dfd868cead0219ab85354cc53d20e772753c6bb9169d3",
        "muid": "9c02f497ee"
    },
    "llms/nllb-200-distilled-600M/pytorch_model.bin": {
        "size": 2460457927,
        "hash": "c266c2cfd19758b6d09c1fc31ecdf1e485509035f6b51dfe84f1ada83eefcc42",
        "muid": "c266c2cfd1"
    },
    "llms/superprompt-v1/model.safetensors": {
        "size": 307867048,
        "hash": "4f31e59c0582d4a74aac96ffb4ea9f5d64b268564ae5d1f68e8620dc940127d7",
        "muid": "ac31ee526b"
    },
    "vae/ae.safetensors": {
        "size": 335304388,
        "hash": "afc8e28272cd15db3919bacdb6918ce9c1ed22e96cb12c4d5ed0fba823529e38",
        "muid": "ddec9c299f"
    },
    "vae/ponyDiffusionV6XL_vae.safetensors": {
        "size": 334641162,
        "hash": "235745af8d86bf4a4c1b5b4f529868b37019a10f7c0b2e79ad0abca3a22bc6e1",
        "muid": "55f20a1016"
    },
    "vae/sdxl_fp16.vae.safetensors": {
        "size": 167335342,
        "hash": "bcb60880a46b63dea58e9bc591abe15f8350bde47b405f9c38f4be70c6161e68",
        "muid": "345f7343ee"
    },
    "checkpoints/Kolors-Inpainting.safetensors": {
        "size": 5159169040,
        "hash": "235db024626d7291e5d8af6776e8f49fa719c90221da9a54b553bb746101a787",
        "muid": "781857d59e"
    },
    "controlnet/Kolors-ControlNet-Canny.safetensors": {
        "size": 2526129624,
        "hash": "ab34969b4ee57a182deb6e52e15d06c81c5285739caf4db2d8774135fd2b99e7",
        "muid": "0dec730f7e"
    },
    "controlnet/Kolors-ControlNet-Depth.safetensors": {
        "size": 2526129624,
        "hash": "b2e9f9ff67c6c8e3b3fbe833f9596d9d16d456b1911633af9aeb4b80949ee60b",
        "muid": "0ad6e5c573"
    },
    "controlnet/Kolors-ControlNet-Pose.safetensors": {
        "size": 2526129624,
        "hash": "2d21bbb821c903166c7c79f8a3435b51a39fd449cd227f74ac1d345bbc4eb153",
        "muid": "3fdfc617f9"
    },
    "checkpoints/juggernautXL_v8Rundiffusion.safetensors": {
        "size": 7105348592,
        "hash": "aeb7e9e6897a1e58b10494bd989d001e3d4bc9b634633cd7b559838f612c2867",
        "muid": "f84d1c1e05d4"
    },
    "checkpoints/juggernautXL_juggXIByRundiffusion.safetensors": {
        "size": 7105350536,
        "hash": "33e58e86686f6b386c526682b5da9228ead4f91d994abd4b053442dc5b42719e",
        "muid": "2f1dcc5762"
    },
    "unet/Kolors-Inpainting.safetensors": {
        "size": 5159169040,
        "hash": "235db024626d7291e5d8af6776e8f49fa719c90221da9a54b553bb746101a787",
        "muid": "781857d59e"
    },
    "controlnet/Kolors-ControlNet-Canny.safetensors": {
        "size": 2526129624,
        "hash": "ab34969b4ee57a182deb6e52e15d06c81c5285739caf4db2d8774135fd2b99e7",
        "muid": "0dec730f7e"
    },
    "controlnet/Kolors-ControlNet-Depth.safetensors": {
        "size": 2526129624,
        "hash": "b2e9f9ff67c6c8e3b3fbe833f9596d9d16d456b1911633af9aeb4b80949ee60b",
        "muid": "0ad6e5c573"
    },
    "controlnet/Kolors-ControlNet-Pose.safetensors": {
        "size": 2526129624,
        "hash": "2d21bbb821c903166c7c79f8a3435b51a39fd449cd227f74ac1d345bbc4eb153",
        "muid": "3fdfc617f9"
    },
}

is_calc_hash = False # flag to print json update message

def sync_model_info(downurls):
    print(f'downurls:{downurls}')
    keylist = []
    return keylist


class ModelsInfo:

    def __init__(self, models_info_path, path_map, scan_hash=False):
        self.scan_models_hash = scan_hash
        self.info_path = models_info_path
        self.path_map = path_map
        self.m_info = {}
        self.m_muid = {}
        self.m_file = {}
        self.load_model_info()
        self.refresh_from_path(scan_hash)

    def get_stat(self):
        return len(self.m_info)

    def load_model_info(self):
        if os.path.exists(self.info_path):
            try:
                with open(self.info_path, "r", encoding="utf-8") as json_file:
                    self.m_info.update(json.load(json_file))
                    file_no_exists_list = []
                    for k in self.m_info.keys():
                        if self.m_info[k]['file']:
                            model_files = self.m_info[k]['file']
                            exists_file_list = []
                            for file in model_files:
                                file = file.replace("/", os.sep)
                                if os.path.exists(file):
                                    if file in self.m_file and self.m_file[file]:
                                        self.m_file[file].append(k)
                                    else:
                                        self.m_file.update({file: [k]})
                                    if file not in exists_file_list:
                                        exists_file_list.append(file)
                            if len(exists_file_list) > 0:
                                self.m_info[k]['file'] = exists_file_list
                            else:
                                file_no_exists_list.append(k)
                        if k not in file_no_exists_list and self.m_info[k]['muid']:
                            self.update_muid_map(self.m_info[k]['muid'], k)
                    for k in file_no_exists_list:
                        del self.m_info[k]
                #print(f'load m_info_key:{self.m_info.keys()}')
            except Exception as e:
                print(f'[ModelInfo] Load model info file {self.info_path} failed!, error:{e}')
                self.m_info = {}
                self.m_muid = {}
                self.m_file = {}

    def refresh_from_path(self, scan_hash=False):
        new_info_key = []
        new_model_key = []
        del_model_key = []
        new_model_file = {}
        new_file_key = []
        del_file_key = []

        self.scan_models_hash = scan_hash
        for path in self.path_map.keys():
            if self.path_map[path]:
                path_filenames = self.get_path_filenames(path)
                for (p, k) in path_filenames:
                    model_key = f"{path}/{k.replace(os.sep, '/')}"
                    file_path = os.path.join(p, k)
                    if file_path not in new_file_key:
                        new_file_key.append(file_path)
                    if model_key in new_model_file:
                        if file_path not in new_model_file[model_key]:
                            new_model_file[model_key].append(file_path)
                    else:
                        new_model_file[model_key] = [file_path]
                    if model_key not in new_info_key:
                        new_info_key.append(model_key)
                    if model_key not in self.m_info.keys():
                        new_model_key.append(model_key)
        if not utils.echo_off:
            print(f'[ModelInfo] new_model_key:{new_model_key}')
        for k in self.m_info.keys():
            if k not in new_info_key:
                del_model_key.append(k)
        for f in self.m_file.keys():
            if f not in new_file_key:
                del_file_key.append(f)
        if not utils.echo_off:
            print(f'[ModelInfo] del_model_key:{del_model_key}, del_file_key:{del_file_key}')
        for f in new_model_key:
            self.add_or_refresh_model(f, new_model_file[f])
        for f in del_model_key:
            self.remove_model(f)
        for f in del_file_key:
            self.remove_file(f)
        self.save_model_info()

    def get_path_filenames(self, path):
        if path.isupper():
            path_filenames = []
            for f_path in self.path_map[path]:
                path_filenames += [(f_path, entry) for entry in os.listdir(f_path) if
                                   os.path.isdir(os.path.join(f_path, entry))]
        else:
            path_filenames = get_model_filenames(self.path_map[path])
        return path_filenames

    def add_or_refresh_model(self, model_key, file_path_list, url=None):
        file_path_list_all = [] if model_key not in self.m_info else self.m_info[model_key]['file']
        for file_path in file_path_list:
            if file_path not in file_path_list_all:
                file_path_list_all.append(file_path)
        url1 = '' if model_key not in self.m_info else self.m_info[model_key]['url']
        url = url1 if url is None else url
        size, hash, muid = self.calculate_model_info(model_key, file_path_list[0])
        self.m_info.update(
            {model_key: {'size': size, 'hash': hash, 'file': file_path_list_all, 'muid': muid, 'url': url}})
        self.update_muid_map(muid, model_key)
        self.update_file_map(file_path_list_all, model_key)

    def remove_model(self, model_key):
        if self.m_info[model_key]['muid'] and self.m_info[model_key]['muid'] in self.m_muid:
            self.remove_muid_map(self.m_info[model_key]['muid'], model_key)
        if self.m_info[model_key]['file']:
            self.remove_file_map(self.m_info[model_key]['file'], model_key)
        del self.m_info[model_key]

    def remove_file(self, file_path):
        if file_path in self.m_file and self.m_file[file_path]:
            for model_key in self.m_file[file_path]:
                cata = model_key.split('/')[0]
                if cata.isupper():
                    continue
                if model_key in self.m_info and self.m_info[model_key]['file']:
                    if file_path in self.m_info[model_key]['file']:
                        self.m_info[model_key]['file'].remove(file_path)
                    if len(self.m_info[model_key]['file']) == 0:
                        self.remove_model(model_key)
            del self.m_file[file_path]

    def remove_file_map(self, file_paths, model_key):
        for file_path in file_paths:
            if file_path in self.m_file:
                if model_key in self.m_file[file_path]:
                    self.m_file[file_path].remove(model_key)
                if len(self.m_file[file_path]) == 0:
                    del self.m_file[file_path]

    def update_file_map(self, file_paths, model_key):
        for file_path in file_paths:
            if file_path in self.m_file:
                if model_key not in self.m_file[file_path]:
                    self.m_file[file_path].append(model_key)
            else:
                self.m_file.update({file_path: [model_key]})

    def update_muid_map(self, muid, model_key):
        if muid in self.m_muid and self.m_muid[muid]:
            if model_key not in self.m_muid[muid]:
                self.m_muid[muid].append(model_key)
        else:
            self.m_muid[muid] = [model_key]

    def remove_muid_map(self, muid, model_key):
        if muid in self.m_muid and self.m_muid[muid]:
            if model_key in self.m_muid[muid]:
                self.m_muid[muid].remove(model_key)
            if len(self.m_muid[muid]) == 0:
                del self.m_muid[muid]

    def calculate_model_info(self, model_key, file_path):
        global is_calc_hash
        if os.path.isdir(file_path):
            size = utils.get_size_subfolders(file_path)
        else:
            size = os.path.getsize(file_path)
        if model_key in default_models_info.keys() and size == default_models_info[model_key]["size"]:
            hash = default_models_info[model_key]["hash"]
            muid = default_models_info[model_key]["muid"]
        elif self.scan_models_hash:
            is_calc_hash = True
            print(f'[ModelInfo] Calculate hash for {file_path}')
            if os.path.isdir(file_path):
                hash = utils.calculate_sha256_subfolder(file_path)
                muid = hash[:10]
            else:
                hash = utils.sha256(file_path, length=None)
                _, file_extension = os.path.splitext(file_path)
                if file_extension == '.safetensors':
                    print(f'[ModelInfo] Calculate addnet hash for {file_path}')
                    muid = utils.sha256(file_path, use_addnet_hash=True)
                else:
                    muid = hash[:10]
        else:
            hash = ''
            muid = ''
        return size, hash, muid

    def save_model_info(self):
        global is_calc_hash
        try:
            with open(self.info_path, "w", encoding="utf-8") as json_file:
                json.dump(self.m_info, json_file, indent=4)
                if is_calc_hash:
                    print(f'[ModelInfo] Models info updated and saved to {self.info_path}')
        except PermissionError:
            print(f'[ModelInfo] Models info update and save failed: Permission denied, {self.info_path}')
        except json.JSONDecodeError:
            print(f'[ModelInfo] Models info update and save failed: JSON decode error, {self.info_path}')
        except Exception as e:
            print(f'[ModelInfo Models info update and save failed: {e}, {self.info_path}')

    def refresh_file(self, action, file_path, url=None):
        if action not in ['add', 'delete']:
            print(f'[ModelInfo] Invalid action: {action}. Action must be either "add" or "delete".')
            return

        if action == 'add':
            if not os.path.exists(file_path):
                print(f'[ModelInfo] The added file does not exist: {file_path}')
                return

            # Determine the catalog and model_name
            catalog = None
            max_match_length = 0
            model_name = os.path.basename(file_path)
            for key, paths in self.path_map.items():
                for path in paths:
                    if file_path.startswith(path) and len(path) > max_match_length:
                        catalog = key
                        max_match_length = len(path)
                        model_name = file_path[len(path) + 1:]

            if not catalog:
                print(f'[ModelInfo] The added file path {file_path} does not match any path in path_map.')
                return

            scan_hash = self.scan_models_hash
            self.scan_models_hash = True
            model_name = model_name.replace(os.sep, '/')
            model_key = f'{catalog}/{model_name}'
            self.add_or_refresh_model(model_key, [file_path], url)
            print(f'[ModelInfo] Added model {model_key} with file {file_path}')
            self.scan_models_hash = scan_hash

        elif action == 'delete':
            if file_path not in self.m_file:
                print(f'[ModelInfo] File not found in model info: {file_path}')
                return
            self.remove_file(file_path)
            print(f'[ModelInfo] Deleted model {model_key} with file {file_path}')

        self.save_model_info()

    def exists_model(self, catalog='', model_path='', muid=None):
        if muid and muid in self.m_muid:
            return True
        if catalog and model_path:
            model_path = model_path.replace('\\', '/').replace(os.sep, '/')
            model_key = f'{catalog}/{model_path}'
            if model_key in self.m_info:
                return True
        return False

    def exists_model_key(self, model_key):
        if model_key:
            cata = model_key.split('/')[0]
            model_path = model_key[len(cata) + 1:].replace('\\', '/').replace(os.sep, '/')
            model_key = f'{cata}/{model_path}'
            if model_key in self.m_info:
                return True
        return False

    def get_model_filepath(self, catalog='', model_path='', muid=None):
        if muid and muid in self.m_muid:
            model_key = self.m_muid[muid][0]
            file_paths = self.m_info[model_key]['file']
            return file_paths[0]
        if catalog and model_path:
            model_path = model_path.replace('\\', '/').replace(os.sep, '/')
            model_key = f'{catalog}/{model_path}'
            if model_key in self.m_info:
                return self.m_info[model_key]['file'][0]
        return ''

    def get_model_names(self, catalog, filters=[], casesensitive=False, reverse=False):
        result = []
        result_reverse = []
        for f in self.m_info.keys():
            cata = f.split('/')[0]
            m_path_or_file = f[len(cata) + 1:].replace('/', os.sep)
            if catalog and cata == catalog:
                result_reverse.append(m_path_or_file)
                if len(filters) > 0:
                    for item in filters:
                        if casesensitive:
                            if item in m_path_or_file:
                                result.append(m_path_or_file)
                                result_reverse.pop()
                                break
                        else:
                            if item.lower() in m_path_or_file.lower():
                                result.append(m_path_or_file)
                                result_reverse.pop()
                                break
                else:
                    result.append(m_path_or_file)
                    result_reverse.pop()
        if reverse:
            return sorted(result_reverse, key=str.casefold)
        return sorted(result, key=str.casefold)

    def get_model_info(self, catalog, model_path):
        if catalog and model_path:
            model_path = model_path.replace('\\', '/').replace(os.sep, '/')
        model_key = f'{catalog}/{model_path}'
        return self.get_model_key_info(model_key)

    def get_model_key_info(self, model_key):
        if model_key:
            cata = model_key.split('/')[0]
            model_path = model_key[len(cata) + 1:].replace('\\', '/').replace(os.sep, '/')
            model_key = f'{cata}/{model_path}'
            if model_key in self.m_info:
                return self.m_info[model_key]
        return None

    def get_file_muid(self, file_path):
        if file_path:
            if file_path not in self.m_file:
                self.refresh_file('add', file_path)
            model_key = self.m_file[file_path][0]
            muid = self.m_info[model_key]['muid']
            if not muid:
                scan_hash = self.scan_models_hash
                self.scan_models_hash = True
                self.add_or_refresh_model(model_key, [file_path])
                self.save_model_info()
                self.scan_models_hash = scan_hash
                muid = self.m_info[model_key]['muid']
            return muid
        return ''

    def get_model_path_by_name(self, catalog, name, casesensitive=True, collection=False):
        if catalog and name:
            catalog = f'{catalog}/'
            if os.sep in name:
                name = name.replace(os.sep, '/')
            name1 = f'/{name}'
            if not casesensitive:
                name=name1.lower()
                catalog=catalog.lower()
            results = []
            for f in self.m_info.keys():
                if not casesensitive:
                    f1=f.lower()
                else:
                    f1=f
                if f1.startswith(catalog) and f1.endswith(name):
                    cata = f.split('/')[0]
                    model_path = f[len(cata) + 1:].replace('/', os.sep)
                    if not collection:
                        return model_path
                    results.append(model_path)
            if collection:
                return results
        return ''

    def get_file_path_by_name(self, catalog, name, casesensitive=True, collection=False):
        if catalog and name:
            cata = f'{catalog}/'
            if os.sep in name:
                name = name.replace(os.sep, '/')
            name1 = f'/{name}'
            if not casesensitive:
                name1=name1.lower()
                cata=cata.lower()
            results = []
            for f in self.m_info.keys():
                if not casesensitive:
                    f1=f.lower()
                else:
                    f1=f
                if f1.startswith(cata) and f1.endswith(name1):
                    file_paths = self.m_info[f]['file']
                    if not collection:
                        return file_paths[0]
                    results.append(file_paths[0])
            if collection and len(results)>0:
                return results
            return os.path.join(self.path_map[catalog][0], name.replace('/', os.sep))
        return ''

def get_model_filenames(folder_paths, extensions=None, name_filter=None, variation=False):
    if extensions is None:
        extensions = ['.pth', '.ckpt', '.bin', '.safetensors', '.fooocus.patch', '.gguf']
    files = []
    for folder in folder_paths:
        files += get_files_from_folder(folder, extensions, name_filter, variation)
    return files


folder_variation = {}


def get_files_from_folder(folder_path, extensions=None, name_filter=None, variation=False):
    global folder_variation

    if not os.path.isdir(folder_path):
        raise ValueError("Folder path is not a valid directory.")

    filenames = []
    for root, dirs, files in os.walk(folder_path, topdown=False):
        relative_path = os.path.relpath(root, folder_path)
        if relative_path == ".":
            relative_path = ""
        for filename in sorted(files, key=lambda s: s.casefold()):
            _, file_extension = os.path.splitext(filename)
            if (extensions is None or file_extension.lower() in extensions) and (
                    name_filter is None or name_filter in _):
                path = os.path.join(relative_path, filename)
                if variation:
                    mtime = int(os.path.getmtime(os.path.join(root, filename)))
                    if folder_path not in folder_variation or path not in folder_variation[folder_path] or mtime > \
                            folder_variation[folder_path][path]:
                        if folder_path not in folder_variation:
                            folder_variation.update({folder_path: {path: mtime}})
                        else:
                            folder_variation[folder_path].update({path: mtime})
                        filenames.append((folder_path, path))
                else:
                    filenames.append((folder_path, path))
    return filenames