Spaces:
Configuration error
Configuration error
File size: 18,802 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import random
import warnings
from typing import Any, Dict, List, Sequence, Tuple
import cv2
import numpy as np
from custom_albumentations import random_utils
from custom_albumentations.augmentations import functional as FMain
from custom_albumentations.augmentations.blur import functional as F
from custom_albumentations.core.transforms_interface import (
ImageOnlyTransform,
ScaleFloatType,
ScaleIntType,
to_tuple,
)
__all__ = ["Blur", "MotionBlur", "GaussianBlur", "GlassBlur", "AdvancedBlur", "MedianBlur", "Defocus", "ZoomBlur"]
class Blur(ImageOnlyTransform):
"""Blur the input image using a random-sized kernel.
Args:
blur_limit (int, (int, int)): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.blur(img, ksize)
def get_params(self) -> Dict[str, Any]:
return {"ksize": int(random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))))}
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return ("blur_limit",)
class MotionBlur(Blur):
"""Apply motion blur to the input image using a random-sized kernel.
Args:
blur_limit (int): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
allow_shifted (bool): if set to true creates non shifted kernels only,
otherwise creates randomly shifted kernels. Default: True.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = 7,
allow_shifted: bool = True,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(blur_limit=blur_limit, always_apply=always_apply, p=p)
self.allow_shifted = allow_shifted
if not allow_shifted and self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError(f"Blur limit must be odd when centered=True. Got: {self.blur_limit}")
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return super().get_transform_init_args_names() + ("allow_shifted",)
def apply(self, img: np.ndarray, kernel: np.ndarray = None, **params) -> np.ndarray: # type: ignore
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, Any]:
ksize = random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2)))
if ksize <= 2:
raise ValueError("ksize must be > 2. Got: {}".format(ksize))
kernel = np.zeros((ksize, ksize), dtype=np.uint8)
x1, x2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
if x1 == x2:
y1, y2 = random.sample(range(ksize), 2)
else:
y1, y2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
def make_odd_val(v1, v2):
len_v = abs(v1 - v2) + 1
if len_v % 2 != 1:
if v2 > v1:
v2 -= 1
else:
v1 -= 1
return v1, v2
if not self.allow_shifted:
x1, x2 = make_odd_val(x1, x2)
y1, y2 = make_odd_val(y1, y2)
xc = (x1 + x2) / 2
yc = (y1 + y2) / 2
center = ksize / 2 - 0.5
dx = xc - center
dy = yc - center
x1, x2 = [int(i - dx) for i in [x1, x2]]
y1, y2 = [int(i - dy) for i in [y1, y2]]
cv2.line(kernel, (x1, y1), (x2, y2), 1, thickness=1)
# Normalize kernel
return {"kernel": kernel.astype(np.float32) / np.sum(kernel)}
class MedianBlur(Blur):
"""Blur the input image using a median filter with a random aperture linear size.
Args:
blur_limit (int): maximum aperture linear size for blurring the input image.
Must be odd and in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(blur_limit, always_apply, p)
if self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError("MedianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.median_blur(img, ksize)
class GaussianBlur(ImageOnlyTransform):
"""Blur the input image using a Gaussian filter with a random kernel size.
Args:
blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigma_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigma_limit: ScaleFloatType = 0,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 0)
self.sigma_limit = to_tuple(sigma_limit if sigma_limit is not None else 0, 0)
if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0:
self.blur_limit = 3, max(3, self.blur_limit[1])
warnings.warn(
"blur_limit and sigma_limit minimum value can not be both equal to 0. "
"blur_limit minimum value changed to 3."
)
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("GaussianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, sigma: float = 0, **params) -> np.ndarray:
return F.gaussian_blur(img, ksize, sigma=sigma)
def get_params(self) -> Dict[str, float]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1)
if ksize != 0 and ksize % 2 != 1:
ksize = (ksize + 1) % (self.blur_limit[1] + 1)
return {"ksize": ksize, "sigma": random.uniform(*self.sigma_limit)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("blur_limit", "sigma_limit")
class GlassBlur(Blur):
"""Apply glass noise to the input image.
Args:
sigma (float): standard deviation for Gaussian kernel.
max_delta (int): max distance between pixels which are swapped.
iterations (int): number of repeats.
Should be in range [1, inf). Default: (2).
mode (str): mode of computation: fast or exact. Default: "fast".
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Reference:
| https://arxiv.org/abs/1903.12261
| https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
"""
def __init__(
self,
sigma: float = 0.7,
max_delta: int = 4,
iterations: int = 2,
always_apply: bool = False,
mode: str = "fast",
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
if iterations < 1:
raise ValueError(f"Iterations should be more or equal to 1, but we got {iterations}")
if mode not in ["fast", "exact"]:
raise ValueError(f"Mode should be 'fast' or 'exact', but we got {mode}")
self.sigma = sigma
self.max_delta = max_delta
self.iterations = iterations
self.mode = mode
def apply(self, img: np.ndarray, dxy: np.ndarray = None, **params) -> np.ndarray: # type: ignore
assert dxy is not None
return F.glass_blur(img, self.sigma, self.max_delta, self.iterations, dxy, self.mode)
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, np.ndarray]:
img = params["image"]
# generate array containing all necessary values for transformations
width_pixels = img.shape[0] - self.max_delta * 2
height_pixels = img.shape[1] - self.max_delta * 2
total_pixels = width_pixels * height_pixels
dxy = random_utils.randint(-self.max_delta, self.max_delta, size=(total_pixels, self.iterations, 2))
return {"dxy": dxy}
def get_transform_init_args_names(self) -> Tuple[str, str, str]:
return ("sigma", "max_delta", "iterations")
@property
def targets_as_params(self) -> List[str]:
return ["image"]
class AdvancedBlur(ImageOnlyTransform):
"""Blur the input image using a Generalized Normal filter with a randomly selected parameters.
This transform also adds multiplicative noise to generated kernel before convolution.
Args:
blur_limit: maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigmaX_limit: Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigmaX_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
sigmaY_limit: Same as `sigmaY_limit` for another dimension.
rotate_limit: Range from which a random angle used to rotate Gaussian kernel is picked.
If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90).
beta_limit: Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution
tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0).
noise_limit: Multiplicative factor that control strength of kernel noise. Must be positive and preferably
centered around 1.0. If set single value `noise_limit` will be in range (0, noise_limit).
Default: (0.75, 1.25).
p (float): probability of applying the transform. Default: 0.5.
Reference:
https://arxiv.org/abs/2107.10833
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigmaX_limit: ScaleFloatType = (0.2, 1.0),
sigmaY_limit: ScaleFloatType = (0.2, 1.0),
rotate_limit: ScaleIntType = 90,
beta_limit: ScaleFloatType = (0.5, 8.0),
noise_limit: ScaleFloatType = (0.9, 1.1),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
self.sigmaX_limit = self.__check_values(to_tuple(sigmaX_limit, 0.0), name="sigmaX_limit")
self.sigmaY_limit = self.__check_values(to_tuple(sigmaY_limit, 0.0), name="sigmaY_limit")
self.rotate_limit = to_tuple(rotate_limit)
self.beta_limit = to_tuple(beta_limit, low=0.0)
self.noise_limit = self.__check_values(to_tuple(noise_limit, 0.0), name="noise_limit")
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("AdvancedBlur supports only odd blur limits.")
if self.sigmaX_limit[0] == 0 and self.sigmaY_limit[0] == 0:
raise ValueError("sigmaX_limit and sigmaY_limit minimum value can not be both equal to 0.")
if not (self.beta_limit[0] < 1.0 < self.beta_limit[1]):
raise ValueError("Beta limit is expected to include 1.0")
@staticmethod
def __check_values(
value: Sequence[float], name: str, bounds: Tuple[float, float] = (0, float("inf"))
) -> Sequence[float]:
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"{name} values should be between {bounds}")
return value
def apply(self, img: np.ndarray, kernel: np.ndarray = np.array(None), **params) -> np.ndarray:
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, np.ndarray]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
sigmaX = random.uniform(*self.sigmaX_limit)
sigmaY = random.uniform(*self.sigmaY_limit)
angle = np.deg2rad(random.uniform(*self.rotate_limit))
# Split into 2 cases to avoid selection of narrow kernels (beta > 1) too often.
if random.random() < 0.5:
beta = random.uniform(self.beta_limit[0], 1)
else:
beta = random.uniform(1, self.beta_limit[1])
noise_matrix = random_utils.uniform(self.noise_limit[0], self.noise_limit[1], size=[ksize, ksize])
# Generate mesh grid centered at zero.
ax = np.arange(-ksize // 2 + 1.0, ksize // 2 + 1.0)
# Shape (ksize, ksize, 2)
grid = np.stack(np.meshgrid(ax, ax), axis=-1)
# Calculate rotated sigma matrix
d_matrix = np.array([[sigmaX**2, 0], [0, sigmaY**2]])
u_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
sigma_matrix = np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
inverse_sigma = np.linalg.inv(sigma_matrix)
# Described in "Parameter Estimation For Multivariate Generalized Gaussian Distributions"
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
# Add noise
kernel = kernel * noise_matrix
# Normalize kernel
kernel = kernel.astype(np.float32) / np.sum(kernel)
return {"kernel": kernel}
def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str]:
return (
"blur_limit",
"sigmaX_limit",
"sigmaY_limit",
"rotate_limit",
"beta_limit",
"noise_limit",
)
class Defocus(ImageOnlyTransform):
"""
Apply defocus transform. See https://arxiv.org/abs/1903.12261.
Args:
radius ((int, int) or int): range for radius of defocusing.
If limit is a single int, the range will be [1, limit]. Default: (3, 10).
alias_blur ((float, float) or float): range for alias_blur of defocusing (sigma of gaussian blur).
If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
radius: ScaleIntType = (3, 10),
alias_blur: ScaleFloatType = (0.1, 0.5),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.radius = to_tuple(radius, low=1)
self.alias_blur = to_tuple(alias_blur, low=0)
if self.radius[0] <= 0:
raise ValueError("Parameter radius must be positive")
if self.alias_blur[0] < 0:
raise ValueError("Parameter alias_blur must be non-negative")
def apply(self, img: np.ndarray, radius: int = 3, alias_blur: float = 0.5, **params) -> np.ndarray:
return F.defocus(img, radius, alias_blur)
def get_params(self) -> Dict[str, Any]:
return {
"radius": random_utils.randint(self.radius[0], self.radius[1] + 1),
"alias_blur": random_utils.uniform(self.alias_blur[0], self.alias_blur[1]),
}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("radius", "alias_blur")
class ZoomBlur(ImageOnlyTransform):
"""
Apply zoom blur transform. See https://arxiv.org/abs/1903.12261.
Args:
max_factor ((float, float) or float): range for max factor for blurring.
If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31).
All max_factor values should be larger than 1.
step_factor ((float, float) or float): If single float will be used as step parameter for np.arange.
If tuple of float step_factor will be in range `[step_factor[0], step_factor[1])`. Default: (0.01, 0.03).
All step_factor values should be positive.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
max_factor: ScaleFloatType = 1.31,
step_factor: ScaleFloatType = (0.01, 0.03),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.max_factor = to_tuple(max_factor, low=1.0)
self.step_factor = to_tuple(step_factor, step_factor)
if self.max_factor[0] < 1:
raise ValueError("Max factor must be larger or equal 1")
if self.step_factor[0] <= 0:
raise ValueError("Step factor must be positive")
def apply(self, img: np.ndarray, zoom_factors: np.ndarray = np.array(None), **params) -> np.ndarray:
assert zoom_factors is not None
return F.zoom_blur(img, zoom_factors)
def get_params(self) -> Dict[str, Any]:
max_factor = random.uniform(self.max_factor[0], self.max_factor[1])
step_factor = random.uniform(self.step_factor[0], self.step_factor[1])
return {"zoom_factors": np.arange(1.0, max_factor, step_factor)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("max_factor", "step_factor")
|