File size: 18,802 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import random
import warnings
from typing import Any, Dict, List, Sequence, Tuple

import cv2
import numpy as np

from custom_albumentations import random_utils
from custom_albumentations.augmentations import functional as FMain
from custom_albumentations.augmentations.blur import functional as F
from custom_albumentations.core.transforms_interface import (
    ImageOnlyTransform,
    ScaleFloatType,
    ScaleIntType,
    to_tuple,
)

__all__ = ["Blur", "MotionBlur", "GaussianBlur", "GlassBlur", "AdvancedBlur", "MedianBlur", "Defocus", "ZoomBlur"]


class Blur(ImageOnlyTransform):
    """Blur the input image using a random-sized kernel.

    Args:
        blur_limit (int, (int, int)): maximum kernel size for blurring the input image.
            Should be in range [3, inf). Default: (3, 7).
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        uint8, float32
    """

    def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.blur_limit = to_tuple(blur_limit, 3)

    def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
        return F.blur(img, ksize)

    def get_params(self) -> Dict[str, Any]:
        return {"ksize": int(random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))))}

    def get_transform_init_args_names(self) -> Tuple[str, ...]:
        return ("blur_limit",)


class MotionBlur(Blur):
    """Apply motion blur to the input image using a random-sized kernel.

    Args:
        blur_limit (int): maximum kernel size for blurring the input image.
            Should be in range [3, inf). Default: (3, 7).
        allow_shifted (bool): if set to true creates non shifted kernels only,
            otherwise creates randomly shifted kernels. Default: True.
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        blur_limit: ScaleIntType = 7,
        allow_shifted: bool = True,
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(blur_limit=blur_limit, always_apply=always_apply, p=p)
        self.allow_shifted = allow_shifted

        if not allow_shifted and self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
            raise ValueError(f"Blur limit must be odd when centered=True. Got: {self.blur_limit}")

    def get_transform_init_args_names(self) -> Tuple[str, ...]:
        return super().get_transform_init_args_names() + ("allow_shifted",)

    def apply(self, img: np.ndarray, kernel: np.ndarray = None, **params) -> np.ndarray:  # type: ignore
        return FMain.convolve(img, kernel=kernel)

    def get_params(self) -> Dict[str, Any]:
        ksize = random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2)))
        if ksize <= 2:
            raise ValueError("ksize must be > 2. Got: {}".format(ksize))
        kernel = np.zeros((ksize, ksize), dtype=np.uint8)
        x1, x2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
        if x1 == x2:
            y1, y2 = random.sample(range(ksize), 2)
        else:
            y1, y2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)

        def make_odd_val(v1, v2):
            len_v = abs(v1 - v2) + 1
            if len_v % 2 != 1:
                if v2 > v1:
                    v2 -= 1
                else:
                    v1 -= 1
            return v1, v2

        if not self.allow_shifted:
            x1, x2 = make_odd_val(x1, x2)
            y1, y2 = make_odd_val(y1, y2)

            xc = (x1 + x2) / 2
            yc = (y1 + y2) / 2

            center = ksize / 2 - 0.5
            dx = xc - center
            dy = yc - center
            x1, x2 = [int(i - dx) for i in [x1, x2]]
            y1, y2 = [int(i - dy) for i in [y1, y2]]

        cv2.line(kernel, (x1, y1), (x2, y2), 1, thickness=1)

        # Normalize kernel
        return {"kernel": kernel.astype(np.float32) / np.sum(kernel)}


class MedianBlur(Blur):
    """Blur the input image using a median filter with a random aperture linear size.

    Args:
        blur_limit (int): maximum aperture linear size for blurring the input image.
            Must be odd and in range [3, inf). Default: (3, 7).
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        uint8, float32
    """

    def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
        super().__init__(blur_limit, always_apply, p)

        if self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
            raise ValueError("MedianBlur supports only odd blur limits.")

    def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
        return F.median_blur(img, ksize)


class GaussianBlur(ImageOnlyTransform):
    """Blur the input image using a Gaussian filter with a random kernel size.

    Args:
        blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image.
            Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
            as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
            If set single value `blur_limit` will be in range (0, blur_limit).
            Default: (3, 7).
        sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf).
            If set single value `sigma_limit` will be in range (0, sigma_limit).
            If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        blur_limit: ScaleIntType = (3, 7),
        sigma_limit: ScaleFloatType = 0,
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(always_apply, p)
        self.blur_limit = to_tuple(blur_limit, 0)
        self.sigma_limit = to_tuple(sigma_limit if sigma_limit is not None else 0, 0)

        if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0:
            self.blur_limit = 3, max(3, self.blur_limit[1])
            warnings.warn(
                "blur_limit and sigma_limit minimum value can not be both equal to 0. "
                "blur_limit minimum value changed to 3."
            )

        if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
            self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
        ):
            raise ValueError("GaussianBlur supports only odd blur limits.")

    def apply(self, img: np.ndarray, ksize: int = 3, sigma: float = 0, **params) -> np.ndarray:
        return F.gaussian_blur(img, ksize, sigma=sigma)

    def get_params(self) -> Dict[str, float]:
        ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1)
        if ksize != 0 and ksize % 2 != 1:
            ksize = (ksize + 1) % (self.blur_limit[1] + 1)

        return {"ksize": ksize, "sigma": random.uniform(*self.sigma_limit)}

    def get_transform_init_args_names(self) -> Tuple[str, str]:
        return ("blur_limit", "sigma_limit")


class GlassBlur(Blur):
    """Apply glass noise to the input image.

    Args:
        sigma (float): standard deviation for Gaussian kernel.
        max_delta (int): max distance between pixels which are swapped.
        iterations (int): number of repeats.
            Should be in range [1, inf). Default: (2).
        mode (str): mode of computation: fast or exact. Default: "fast".
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        uint8, float32

    Reference:
    |  https://arxiv.org/abs/1903.12261
    |  https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
    """

    def __init__(
        self,
        sigma: float = 0.7,
        max_delta: int = 4,
        iterations: int = 2,
        always_apply: bool = False,
        mode: str = "fast",
        p: float = 0.5,
    ):
        super().__init__(always_apply=always_apply, p=p)
        if iterations < 1:
            raise ValueError(f"Iterations should be more or equal to 1, but we got {iterations}")

        if mode not in ["fast", "exact"]:
            raise ValueError(f"Mode should be 'fast' or 'exact', but we got {mode}")

        self.sigma = sigma
        self.max_delta = max_delta
        self.iterations = iterations
        self.mode = mode

    def apply(self, img: np.ndarray, dxy: np.ndarray = None, **params) -> np.ndarray:  # type: ignore
        assert dxy is not None
        return F.glass_blur(img, self.sigma, self.max_delta, self.iterations, dxy, self.mode)

    def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, np.ndarray]:
        img = params["image"]

        # generate array containing all necessary values for transformations
        width_pixels = img.shape[0] - self.max_delta * 2
        height_pixels = img.shape[1] - self.max_delta * 2
        total_pixels = width_pixels * height_pixels
        dxy = random_utils.randint(-self.max_delta, self.max_delta, size=(total_pixels, self.iterations, 2))

        return {"dxy": dxy}

    def get_transform_init_args_names(self) -> Tuple[str, str, str]:
        return ("sigma", "max_delta", "iterations")

    @property
    def targets_as_params(self) -> List[str]:
        return ["image"]


class AdvancedBlur(ImageOnlyTransform):
    """Blur the input image using a Generalized Normal filter with a randomly selected parameters.
        This transform also adds multiplicative noise to generated kernel before convolution.

    Args:
        blur_limit: maximum Gaussian kernel size for blurring the input image.
            Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
            as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
            If set single value `blur_limit` will be in range (0, blur_limit).
            Default: (3, 7).
        sigmaX_limit: Gaussian kernel standard deviation. Must be in range [0, inf).
            If set single value `sigmaX_limit` will be in range (0, sigma_limit).
            If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
        sigmaY_limit: Same as `sigmaY_limit` for another dimension.
        rotate_limit: Range from which a random angle used to rotate Gaussian kernel is picked.
            If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90).
        beta_limit: Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution
            tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0).
        noise_limit: Multiplicative factor that control strength of kernel noise. Must be positive and preferably
            centered around 1.0. If set single value `noise_limit` will be in range (0, noise_limit).
            Default: (0.75, 1.25).
        p (float): probability of applying the transform. Default: 0.5.

    Reference:
        https://arxiv.org/abs/2107.10833

    Targets:
        image
    Image types:
        uint8, float32
    """

    def __init__(
        self,
        blur_limit: ScaleIntType = (3, 7),
        sigmaX_limit: ScaleFloatType = (0.2, 1.0),
        sigmaY_limit: ScaleFloatType = (0.2, 1.0),
        rotate_limit: ScaleIntType = 90,
        beta_limit: ScaleFloatType = (0.5, 8.0),
        noise_limit: ScaleFloatType = (0.9, 1.1),
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(always_apply, p)
        self.blur_limit = to_tuple(blur_limit, 3)
        self.sigmaX_limit = self.__check_values(to_tuple(sigmaX_limit, 0.0), name="sigmaX_limit")
        self.sigmaY_limit = self.__check_values(to_tuple(sigmaY_limit, 0.0), name="sigmaY_limit")
        self.rotate_limit = to_tuple(rotate_limit)
        self.beta_limit = to_tuple(beta_limit, low=0.0)
        self.noise_limit = self.__check_values(to_tuple(noise_limit, 0.0), name="noise_limit")

        if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
            self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
        ):
            raise ValueError("AdvancedBlur supports only odd blur limits.")

        if self.sigmaX_limit[0] == 0 and self.sigmaY_limit[0] == 0:
            raise ValueError("sigmaX_limit and sigmaY_limit minimum value can not be both equal to 0.")

        if not (self.beta_limit[0] < 1.0 < self.beta_limit[1]):
            raise ValueError("Beta limit is expected to include 1.0")

    @staticmethod
    def __check_values(
        value: Sequence[float], name: str, bounds: Tuple[float, float] = (0, float("inf"))
    ) -> Sequence[float]:
        if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
            raise ValueError(f"{name} values should be between {bounds}")
        return value

    def apply(self, img: np.ndarray, kernel: np.ndarray = np.array(None), **params) -> np.ndarray:
        return FMain.convolve(img, kernel=kernel)

    def get_params(self) -> Dict[str, np.ndarray]:
        ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
        sigmaX = random.uniform(*self.sigmaX_limit)
        sigmaY = random.uniform(*self.sigmaY_limit)
        angle = np.deg2rad(random.uniform(*self.rotate_limit))

        # Split into 2 cases to avoid selection of narrow kernels (beta > 1) too often.
        if random.random() < 0.5:
            beta = random.uniform(self.beta_limit[0], 1)
        else:
            beta = random.uniform(1, self.beta_limit[1])

        noise_matrix = random_utils.uniform(self.noise_limit[0], self.noise_limit[1], size=[ksize, ksize])

        # Generate mesh grid centered at zero.
        ax = np.arange(-ksize // 2 + 1.0, ksize // 2 + 1.0)
        # Shape (ksize, ksize, 2)
        grid = np.stack(np.meshgrid(ax, ax), axis=-1)

        # Calculate rotated sigma matrix
        d_matrix = np.array([[sigmaX**2, 0], [0, sigmaY**2]])
        u_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
        sigma_matrix = np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))

        inverse_sigma = np.linalg.inv(sigma_matrix)
        # Described in "Parameter Estimation For Multivariate Generalized Gaussian Distributions"
        kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
        # Add noise
        kernel = kernel * noise_matrix

        # Normalize kernel
        kernel = kernel.astype(np.float32) / np.sum(kernel)
        return {"kernel": kernel}

    def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str]:
        return (
            "blur_limit",
            "sigmaX_limit",
            "sigmaY_limit",
            "rotate_limit",
            "beta_limit",
            "noise_limit",
        )


class Defocus(ImageOnlyTransform):
    """
    Apply defocus transform. See https://arxiv.org/abs/1903.12261.

    Args:
        radius ((int, int) or int): range for radius of defocusing.
            If limit is a single int, the range will be [1, limit]. Default: (3, 10).
        alias_blur ((float, float) or float): range for alias_blur of defocusing (sigma of gaussian blur).
            If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5).
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        Any
    """

    def __init__(
        self,
        radius: ScaleIntType = (3, 10),
        alias_blur: ScaleFloatType = (0.1, 0.5),
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(always_apply, p)
        self.radius = to_tuple(radius, low=1)
        self.alias_blur = to_tuple(alias_blur, low=0)

        if self.radius[0] <= 0:
            raise ValueError("Parameter radius must be positive")

        if self.alias_blur[0] < 0:
            raise ValueError("Parameter alias_blur must be non-negative")

    def apply(self, img: np.ndarray, radius: int = 3, alias_blur: float = 0.5, **params) -> np.ndarray:
        return F.defocus(img, radius, alias_blur)

    def get_params(self) -> Dict[str, Any]:
        return {
            "radius": random_utils.randint(self.radius[0], self.radius[1] + 1),
            "alias_blur": random_utils.uniform(self.alias_blur[0], self.alias_blur[1]),
        }

    def get_transform_init_args_names(self) -> Tuple[str, str]:
        return ("radius", "alias_blur")


class ZoomBlur(ImageOnlyTransform):
    """
    Apply zoom blur transform. See https://arxiv.org/abs/1903.12261.

    Args:
        max_factor ((float, float) or float): range for max factor for blurring.
            If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31).
            All max_factor values should be larger than 1.
        step_factor ((float, float) or float): If single float will be used as step parameter for np.arange.
            If tuple of float step_factor will be in range `[step_factor[0], step_factor[1])`. Default: (0.01, 0.03).
            All step_factor values should be positive.
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image

    Image types:
        Any
    """

    def __init__(
        self,
        max_factor: ScaleFloatType = 1.31,
        step_factor: ScaleFloatType = (0.01, 0.03),
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(always_apply, p)
        self.max_factor = to_tuple(max_factor, low=1.0)
        self.step_factor = to_tuple(step_factor, step_factor)

        if self.max_factor[0] < 1:
            raise ValueError("Max factor must be larger or equal 1")
        if self.step_factor[0] <= 0:
            raise ValueError("Step factor must be positive")

    def apply(self, img: np.ndarray, zoom_factors: np.ndarray = np.array(None), **params) -> np.ndarray:
        assert zoom_factors is not None
        return F.zoom_blur(img, zoom_factors)

    def get_params(self) -> Dict[str, Any]:
        max_factor = random.uniform(self.max_factor[0], self.max_factor[1])
        step_factor = random.uniform(self.step_factor[0], self.step_factor[1])
        return {"zoom_factors": np.arange(1.0, max_factor, step_factor)}

    def get_transform_init_args_names(self) -> Tuple[str, str]:
        return ("max_factor", "step_factor")