File size: 7,087 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import random
from typing import Iterable, List, Optional, Sequence, Tuple, Union

import numpy as np

from ...core.transforms_interface import DualTransform, KeypointType
from .functional import cutout

__all__ = ["CoarseDropout"]


class CoarseDropout(DualTransform):
    """CoarseDropout of the rectangular regions in the image.

    Args:
        max_holes (int): Maximum number of regions to zero out.
        max_height (int, float): Maximum height of the hole.
        If float, it is calculated as a fraction of the image height.
        max_width (int, float): Maximum width of the hole.
        If float, it is calculated as a fraction of the image width.
        min_holes (int): Minimum number of regions to zero out. If `None`,
            `min_holes` is be set to `max_holes`. Default: `None`.
        min_height (int, float): Minimum height of the hole. Default: None. If `None`,
            `min_height` is set to `max_height`. Default: `None`.
            If float, it is calculated as a fraction of the image height.
        min_width (int, float): Minimum width of the hole. If `None`, `min_height` is
            set to `max_width`. Default: `None`.
            If float, it is calculated as a fraction of the image width.

        fill_value (int, float, list of int, list of float): value for dropped pixels.
        mask_fill_value (int, float, list of int, list of float): fill value for dropped pixels
            in mask. If `None` - mask is not affected. Default: `None`.

    Targets:
        image, mask, keypoints

    Image types:
        uint8, float32

    Reference:
    |  https://arxiv.org/abs/1708.04552
    |  https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
    |  https://github.com/aleju/imgaug/blob/master/imgaug/augmenters/arithmetic.py
    """

    def __init__(
        self,
        max_holes: int = 8,
        max_height: int = 8,
        max_width: int = 8,
        min_holes: Optional[int] = None,
        min_height: Optional[int] = None,
        min_width: Optional[int] = None,
        fill_value: int = 0,
        mask_fill_value: Optional[int] = None,
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super(CoarseDropout, self).__init__(always_apply, p)
        self.max_holes = max_holes
        self.max_height = max_height
        self.max_width = max_width
        self.min_holes = min_holes if min_holes is not None else max_holes
        self.min_height = min_height if min_height is not None else max_height
        self.min_width = min_width if min_width is not None else max_width
        self.fill_value = fill_value
        self.mask_fill_value = mask_fill_value
        if not 0 < self.min_holes <= self.max_holes:
            raise ValueError("Invalid combination of min_holes and max_holes. Got: {}".format([min_holes, max_holes]))

        self.check_range(self.max_height)
        self.check_range(self.min_height)
        self.check_range(self.max_width)
        self.check_range(self.min_width)

        if not 0 < self.min_height <= self.max_height:
            raise ValueError(
                "Invalid combination of min_height and max_height. Got: {}".format([min_height, max_height])
            )
        if not 0 < self.min_width <= self.max_width:
            raise ValueError("Invalid combination of min_width and max_width. Got: {}".format([min_width, max_width]))

    def check_range(self, dimension):
        if isinstance(dimension, float) and not 0 <= dimension < 1.0:
            raise ValueError(
                "Invalid value {}. If using floats, the value should be in the range [0.0, 1.0)".format(dimension)
            )

    def apply(
        self,
        img: np.ndarray,
        fill_value: Union[int, float] = 0,
        holes: Iterable[Tuple[int, int, int, int]] = (),
        **params
    ) -> np.ndarray:
        return cutout(img, holes, fill_value)

    def apply_to_mask(
        self,
        img: np.ndarray,
        mask_fill_value: Union[int, float] = 0,
        holes: Iterable[Tuple[int, int, int, int]] = (),
        **params
    ) -> np.ndarray:
        if mask_fill_value is None:
            return img
        return cutout(img, holes, mask_fill_value)

    def get_params_dependent_on_targets(self, params):
        img = params["image"]
        height, width = img.shape[:2]

        holes = []
        for _n in range(random.randint(self.min_holes, self.max_holes)):
            if all(
                [
                    isinstance(self.min_height, int),
                    isinstance(self.min_width, int),
                    isinstance(self.max_height, int),
                    isinstance(self.max_width, int),
                ]
            ):
                hole_height = random.randint(self.min_height, self.max_height)
                hole_width = random.randint(self.min_width, self.max_width)
            elif all(
                [
                    isinstance(self.min_height, float),
                    isinstance(self.min_width, float),
                    isinstance(self.max_height, float),
                    isinstance(self.max_width, float),
                ]
            ):
                hole_height = int(height * random.uniform(self.min_height, self.max_height))
                hole_width = int(width * random.uniform(self.min_width, self.max_width))
            else:
                raise ValueError(
                    "Min width, max width, \
                    min height and max height \
                    should all either be ints or floats. \
                    Got: {} respectively".format(
                        [
                            type(self.min_width),
                            type(self.max_width),
                            type(self.min_height),
                            type(self.max_height),
                        ]
                    )
                )

            y1 = random.randint(0, height - hole_height)
            x1 = random.randint(0, width - hole_width)
            y2 = y1 + hole_height
            x2 = x1 + hole_width
            holes.append((x1, y1, x2, y2))

        return {"holes": holes}

    @property
    def targets_as_params(self):
        return ["image"]

    def _keypoint_in_hole(self, keypoint: KeypointType, hole: Tuple[int, int, int, int]) -> bool:
        x1, y1, x2, y2 = hole
        x, y = keypoint[:2]
        return x1 <= x < x2 and y1 <= y < y2

    def apply_to_keypoints(
        self, keypoints: Sequence[KeypointType], holes: Iterable[Tuple[int, int, int, int]] = (), **params
    ) -> List[KeypointType]:
        result = set(keypoints)
        for hole in holes:
            for kp in keypoints:
                if self._keypoint_in_hole(kp, hole):
                    result.discard(kp)
        return list(result)

    def get_transform_init_args_names(self):
        return (
            "max_holes",
            "max_height",
            "max_width",
            "min_holes",
            "min_height",
            "min_width",
            "fill_value",
            "mask_fill_value",
        )