Spaces:
Configuration error
Configuration error
File size: 7,087 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import random
from typing import Iterable, List, Optional, Sequence, Tuple, Union
import numpy as np
from ...core.transforms_interface import DualTransform, KeypointType
from .functional import cutout
__all__ = ["CoarseDropout"]
class CoarseDropout(DualTransform):
"""CoarseDropout of the rectangular regions in the image.
Args:
max_holes (int): Maximum number of regions to zero out.
max_height (int, float): Maximum height of the hole.
If float, it is calculated as a fraction of the image height.
max_width (int, float): Maximum width of the hole.
If float, it is calculated as a fraction of the image width.
min_holes (int): Minimum number of regions to zero out. If `None`,
`min_holes` is be set to `max_holes`. Default: `None`.
min_height (int, float): Minimum height of the hole. Default: None. If `None`,
`min_height` is set to `max_height`. Default: `None`.
If float, it is calculated as a fraction of the image height.
min_width (int, float): Minimum width of the hole. If `None`, `min_height` is
set to `max_width`. Default: `None`.
If float, it is calculated as a fraction of the image width.
fill_value (int, float, list of int, list of float): value for dropped pixels.
mask_fill_value (int, float, list of int, list of float): fill value for dropped pixels
in mask. If `None` - mask is not affected. Default: `None`.
Targets:
image, mask, keypoints
Image types:
uint8, float32
Reference:
| https://arxiv.org/abs/1708.04552
| https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
| https://github.com/aleju/imgaug/blob/master/imgaug/augmenters/arithmetic.py
"""
def __init__(
self,
max_holes: int = 8,
max_height: int = 8,
max_width: int = 8,
min_holes: Optional[int] = None,
min_height: Optional[int] = None,
min_width: Optional[int] = None,
fill_value: int = 0,
mask_fill_value: Optional[int] = None,
always_apply: bool = False,
p: float = 0.5,
):
super(CoarseDropout, self).__init__(always_apply, p)
self.max_holes = max_holes
self.max_height = max_height
self.max_width = max_width
self.min_holes = min_holes if min_holes is not None else max_holes
self.min_height = min_height if min_height is not None else max_height
self.min_width = min_width if min_width is not None else max_width
self.fill_value = fill_value
self.mask_fill_value = mask_fill_value
if not 0 < self.min_holes <= self.max_holes:
raise ValueError("Invalid combination of min_holes and max_holes. Got: {}".format([min_holes, max_holes]))
self.check_range(self.max_height)
self.check_range(self.min_height)
self.check_range(self.max_width)
self.check_range(self.min_width)
if not 0 < self.min_height <= self.max_height:
raise ValueError(
"Invalid combination of min_height and max_height. Got: {}".format([min_height, max_height])
)
if not 0 < self.min_width <= self.max_width:
raise ValueError("Invalid combination of min_width and max_width. Got: {}".format([min_width, max_width]))
def check_range(self, dimension):
if isinstance(dimension, float) and not 0 <= dimension < 1.0:
raise ValueError(
"Invalid value {}. If using floats, the value should be in the range [0.0, 1.0)".format(dimension)
)
def apply(
self,
img: np.ndarray,
fill_value: Union[int, float] = 0,
holes: Iterable[Tuple[int, int, int, int]] = (),
**params
) -> np.ndarray:
return cutout(img, holes, fill_value)
def apply_to_mask(
self,
img: np.ndarray,
mask_fill_value: Union[int, float] = 0,
holes: Iterable[Tuple[int, int, int, int]] = (),
**params
) -> np.ndarray:
if mask_fill_value is None:
return img
return cutout(img, holes, mask_fill_value)
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
holes = []
for _n in range(random.randint(self.min_holes, self.max_holes)):
if all(
[
isinstance(self.min_height, int),
isinstance(self.min_width, int),
isinstance(self.max_height, int),
isinstance(self.max_width, int),
]
):
hole_height = random.randint(self.min_height, self.max_height)
hole_width = random.randint(self.min_width, self.max_width)
elif all(
[
isinstance(self.min_height, float),
isinstance(self.min_width, float),
isinstance(self.max_height, float),
isinstance(self.max_width, float),
]
):
hole_height = int(height * random.uniform(self.min_height, self.max_height))
hole_width = int(width * random.uniform(self.min_width, self.max_width))
else:
raise ValueError(
"Min width, max width, \
min height and max height \
should all either be ints or floats. \
Got: {} respectively".format(
[
type(self.min_width),
type(self.max_width),
type(self.min_height),
type(self.max_height),
]
)
)
y1 = random.randint(0, height - hole_height)
x1 = random.randint(0, width - hole_width)
y2 = y1 + hole_height
x2 = x1 + hole_width
holes.append((x1, y1, x2, y2))
return {"holes": holes}
@property
def targets_as_params(self):
return ["image"]
def _keypoint_in_hole(self, keypoint: KeypointType, hole: Tuple[int, int, int, int]) -> bool:
x1, y1, x2, y2 = hole
x, y = keypoint[:2]
return x1 <= x < x2 and y1 <= y < y2
def apply_to_keypoints(
self, keypoints: Sequence[KeypointType], holes: Iterable[Tuple[int, int, int, int]] = (), **params
) -> List[KeypointType]:
result = set(keypoints)
for hole in holes:
for kp in keypoints:
if self._keypoint_in_hole(kp, hole):
result.discard(kp)
return list(result)
def get_transform_init_args_names(self):
return (
"max_holes",
"max_height",
"max_width",
"min_holes",
"min_height",
"min_width",
"fill_value",
"mask_fill_value",
)
|