File size: 20,364 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from __future__ import division

from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar, cast

import numpy as np

from .transforms_interface import BoxInternalType, BoxType
from .utils import DataProcessor, Params

__all__ = [
    "normalize_bbox",
    "denormalize_bbox",
    "normalize_bboxes",
    "denormalize_bboxes",
    "calculate_bbox_area",
    "filter_bboxes_by_visibility",
    "convert_bbox_to_albumentations",
    "convert_bbox_from_albumentations",
    "convert_bboxes_to_albumentations",
    "convert_bboxes_from_albumentations",
    "check_bbox",
    "check_bboxes",
    "filter_bboxes",
    "union_of_bboxes",
    "BboxProcessor",
    "BboxParams",
]

TBox = TypeVar("TBox", BoxType, BoxInternalType)


class BboxParams(Params):
    """
    Parameters of bounding boxes

    Args:
        format (str): format of bounding boxes. Should be 'coco', 'pascal_voc', 'albumentations' or 'yolo'.

            The `coco` format
                `[x_min, y_min, width, height]`, e.g. [97, 12, 150, 200].
            The `pascal_voc` format
                `[x_min, y_min, x_max, y_max]`, e.g. [97, 12, 247, 212].
            The `albumentations` format
                is like `pascal_voc`, but normalized,
                in other words: `[x_min, y_min, x_max, y_max]`, e.g. [0.2, 0.3, 0.4, 0.5].
            The `yolo` format
                `[x, y, width, height]`, e.g. [0.1, 0.2, 0.3, 0.4];
                `x`, `y` - normalized bbox center; `width`, `height` - normalized bbox width and height.
        label_fields (list): list of fields that are joined with boxes, e.g labels.
            Should be same type as boxes.
        min_area (float): minimum area of a bounding box. All bounding boxes whose
            visible area in pixels is less than this value will be removed. Default: 0.0.
        min_visibility (float): minimum fraction of area for a bounding box
            to remain this box in list. Default: 0.0.
        min_width (float): Minimum width of a bounding box. All bounding boxes whose width is
            less than this value will be removed. Default: 0.0.
        min_height (float): Minimum height of a bounding box. All bounding boxes whose height is
            less than this value will be removed. Default: 0.0.
        check_each_transform (bool): if `True`, then bboxes will be checked after each dual transform.
            Default: `True`
    """

    def __init__(
        self,
        format: str,
        label_fields: Optional[Sequence[str]] = None,
        min_area: float = 0.0,
        min_visibility: float = 0.0,
        min_width: float = 0.0,
        min_height: float = 0.0,
        check_each_transform: bool = True,
    ):
        super(BboxParams, self).__init__(format, label_fields)
        self.min_area = min_area
        self.min_visibility = min_visibility
        self.min_width = min_width
        self.min_height = min_height
        self.check_each_transform = check_each_transform

    def _to_dict(self) -> Dict[str, Any]:
        data = super(BboxParams, self)._to_dict()
        data.update(
            {
                "min_area": self.min_area,
                "min_visibility": self.min_visibility,
                "min_width": self.min_width,
                "min_height": self.min_height,
                "check_each_transform": self.check_each_transform,
            }
        )
        return data

    @classmethod
    def is_serializable(cls) -> bool:
        return True

    @classmethod
    def get_class_fullname(cls) -> str:
        return "BboxParams"


class BboxProcessor(DataProcessor):
    def __init__(self, params: BboxParams, additional_targets: Optional[Dict[str, str]] = None):
        super().__init__(params, additional_targets)

    @property
    def default_data_name(self) -> str:
        return "bboxes"

    def ensure_data_valid(self, data: Dict[str, Any]) -> None:
        for data_name in self.data_fields:
            data_exists = data_name in data and len(data[data_name])
            if data_exists and len(data[data_name][0]) < 5:
                if self.params.label_fields is None:
                    raise ValueError(
                        "Please specify 'label_fields' in 'bbox_params' or add labels to the end of bbox "
                        "because bboxes must have labels"
                    )
        if self.params.label_fields:
            if not all(i in data.keys() for i in self.params.label_fields):
                raise ValueError("Your 'label_fields' are not valid - them must have same names as params in dict")

    def filter(self, data: Sequence, rows: int, cols: int) -> List:
        self.params: BboxParams
        return filter_bboxes(
            data,
            rows,
            cols,
            min_area=self.params.min_area,
            min_visibility=self.params.min_visibility,
            min_width=self.params.min_width,
            min_height=self.params.min_height,
        )

    def check(self, data: Sequence, rows: int, cols: int) -> None:
        check_bboxes(data)

    def convert_from_albumentations(self, data: Sequence, rows: int, cols: int) -> List[BoxType]:
        return convert_bboxes_from_albumentations(data, self.params.format, rows, cols, check_validity=True)

    def convert_to_albumentations(self, data: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
        return convert_bboxes_to_albumentations(data, self.params.format, rows, cols, check_validity=True)


def normalize_bbox(bbox: TBox, rows: int, cols: int) -> TBox:
    """Normalize coordinates of a bounding box. Divide x-coordinates by image width and y-coordinates
    by image height.

    Args:
        bbox: Denormalized bounding box `(x_min, y_min, x_max, y_max)`.
        rows: Image height.
        cols: Image width.

    Returns:
        Normalized bounding box `(x_min, y_min, x_max, y_max)`.

    Raises:
        ValueError: If rows or cols is less or equal zero

    """

    if rows <= 0:
        raise ValueError("Argument rows must be positive integer")
    if cols <= 0:
        raise ValueError("Argument cols must be positive integer")

    tail: Tuple[Any, ...]
    (x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])

    x_min, x_max = x_min / cols, x_max / cols
    y_min, y_max = y_min / rows, y_max / rows

    return cast(BoxType, (x_min, y_min, x_max, y_max) + tail)  # type: ignore


def denormalize_bbox(bbox: TBox, rows: int, cols: int) -> TBox:
    """Denormalize coordinates of a bounding box. Multiply x-coordinates by image width and y-coordinates
    by image height. This is an inverse operation for :func:`~albumentations.augmentations.bbox.normalize_bbox`.

    Args:
        bbox: Normalized bounding box `(x_min, y_min, x_max, y_max)`.
        rows: Image height.
        cols: Image width.

    Returns:
        Denormalized bounding box `(x_min, y_min, x_max, y_max)`.

    Raises:
        ValueError: If rows or cols is less or equal zero

    """
    tail: Tuple[Any, ...]
    (x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])

    if rows <= 0:
        raise ValueError("Argument rows must be positive integer")
    if cols <= 0:
        raise ValueError("Argument cols must be positive integer")

    x_min, x_max = x_min * cols, x_max * cols
    y_min, y_max = y_min * rows, y_max * rows

    return cast(BoxType, (x_min, y_min, x_max, y_max) + tail)  # type: ignore


def normalize_bboxes(bboxes: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
    """Normalize a list of bounding boxes.

    Args:
        bboxes: Denormalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
        rows: Image height.
        cols: Image width.

    Returns:
        Normalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.

    """
    return [normalize_bbox(bbox, rows, cols) for bbox in bboxes]


def denormalize_bboxes(bboxes: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
    """Denormalize a list of bounding boxes.

    Args:
        bboxes: Normalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
        rows: Image height.
        cols: Image width.

    Returns:
        List: Denormalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.

    """
    return [denormalize_bbox(bbox, rows, cols) for bbox in bboxes]


def calculate_bbox_area(bbox: BoxType, rows: int, cols: int) -> float:
    """Calculate the area of a bounding box in (fractional) pixels.

    Args:
        bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
        rows: Image height.
        cols: Image width.

    Return:
        Area in (fractional) pixels of the (denormalized) bounding box.

    """
    bbox = denormalize_bbox(bbox, rows, cols)
    x_min, y_min, x_max, y_max = bbox[:4]
    area = (x_max - x_min) * (y_max - y_min)
    return area


def filter_bboxes_by_visibility(
    original_shape: Sequence[int],
    bboxes: Sequence[BoxType],
    transformed_shape: Sequence[int],
    transformed_bboxes: Sequence[BoxType],
    threshold: float = 0.0,
    min_area: float = 0.0,
) -> List[BoxType]:
    """Filter bounding boxes and return only those boxes whose visibility after transformation is above
    the threshold and minimal area of bounding box in pixels is more then min_area.

    Args:
        original_shape: Original image shape `(height, width, ...)`.
        bboxes: Original bounding boxes `[(x_min, y_min, x_max, y_max)]`.
        transformed_shape: Transformed image shape `(height, width)`.
        transformed_bboxes: Transformed bounding boxes `[(x_min, y_min, x_max, y_max)]`.
        threshold: visibility threshold. Should be a value in the range [0.0, 1.0].
        min_area: Minimal area threshold.

    Returns:
        Filtered bounding boxes `[(x_min, y_min, x_max, y_max)]`.

    """
    img_height, img_width = original_shape[:2]
    transformed_img_height, transformed_img_width = transformed_shape[:2]

    visible_bboxes = []
    for bbox, transformed_bbox in zip(bboxes, transformed_bboxes):
        if not all(0.0 <= value <= 1.0 for value in transformed_bbox[:4]):
            continue
        bbox_area = calculate_bbox_area(bbox, img_height, img_width)
        transformed_bbox_area = calculate_bbox_area(transformed_bbox, transformed_img_height, transformed_img_width)
        if transformed_bbox_area < min_area:
            continue
        visibility = transformed_bbox_area / bbox_area
        if visibility >= threshold:
            visible_bboxes.append(transformed_bbox)
    return visible_bboxes


def convert_bbox_to_albumentations(
    bbox: BoxType, source_format: str, rows: int, cols: int, check_validity: bool = False
) -> BoxType:
    """Convert a bounding box from a format specified in `source_format` to the format used by albumentations:
    normalized coordinates of top-left and bottom-right corners of the bounding box in a form of
    `(x_min, y_min, x_max, y_max)` e.g. `(0.15, 0.27, 0.67, 0.5)`.

    Args:
        bbox: A bounding box tuple.
        source_format: format of the bounding box. Should be 'coco', 'pascal_voc', or 'yolo'.
        check_validity: Check if all boxes are valid boxes.
        rows: Image height.
        cols: Image width.

    Returns:
        tuple: A bounding box `(x_min, y_min, x_max, y_max)`.

    Note:
        The `coco` format of a bounding box looks like `(x_min, y_min, width, height)`, e.g. (97, 12, 150, 200).
        The `pascal_voc` format of a bounding box looks like `(x_min, y_min, x_max, y_max)`, e.g. (97, 12, 247, 212).
        The `yolo` format of a bounding box looks like `(x, y, width, height)`, e.g. (0.3, 0.1, 0.05, 0.07);
        where `x`, `y` coordinates of the center of the box, all values normalized to 1 by image height and width.

    Raises:
        ValueError: if `target_format` is not equal to `coco` or `pascal_voc`, or `yolo`.
        ValueError: If in YOLO format all labels not in range (0, 1).

    """
    if source_format not in {"coco", "pascal_voc", "yolo"}:
        raise ValueError(
            f"Unknown source_format {source_format}. Supported formats are: 'coco', 'pascal_voc' and 'yolo'"
        )

    if source_format == "coco":
        (x_min, y_min, width, height), tail = bbox[:4], bbox[4:]
        x_max = x_min + width
        y_max = y_min + height
    elif source_format == "yolo":
        # https://github.com/pjreddie/darknet/blob/f6d861736038da22c9eb0739dca84003c5a5e275/scripts/voc_label.py#L12
        _bbox = np.array(bbox[:4])
        if check_validity and np.any((_bbox <= 0) | (_bbox > 1)):
            raise ValueError("In YOLO format all coordinates must be float and in range (0, 1]")

        (x, y, w, h), tail = bbox[:4], bbox[4:]

        w_half, h_half = w / 2, h / 2
        x_min = x - w_half
        y_min = y - h_half
        x_max = x_min + w
        y_max = y_min + h
    else:
        (x_min, y_min, x_max, y_max), tail = bbox[:4], bbox[4:]

    bbox = (x_min, y_min, x_max, y_max) + tuple(tail)  # type: ignore

    if source_format != "yolo":
        bbox = normalize_bbox(bbox, rows, cols)
    if check_validity:
        check_bbox(bbox)
    return bbox


def convert_bbox_from_albumentations(
    bbox: BoxType, target_format: str, rows: int, cols: int, check_validity: bool = False
) -> BoxType:
    """Convert a bounding box from the format used by albumentations to a format, specified in `target_format`.

    Args:
        bbox: An albumentations bounding box `(x_min, y_min, x_max, y_max)`.
        target_format: required format of the output bounding box. Should be 'coco', 'pascal_voc' or 'yolo'.
        rows: Image height.
        cols: Image width.
        check_validity: Check if all boxes are valid boxes.

    Returns:
        tuple: A bounding box.

    Note:
        The `coco` format of a bounding box looks like `[x_min, y_min, width, height]`, e.g. [97, 12, 150, 200].
        The `pascal_voc` format of a bounding box looks like `[x_min, y_min, x_max, y_max]`, e.g. [97, 12, 247, 212].
        The `yolo` format of a bounding box looks like `[x, y, width, height]`, e.g. [0.3, 0.1, 0.05, 0.07].

    Raises:
        ValueError: if `target_format` is not equal to `coco`, `pascal_voc` or `yolo`.

    """
    if target_format not in {"coco", "pascal_voc", "yolo"}:
        raise ValueError(
            f"Unknown target_format {target_format}. Supported formats are: 'coco', 'pascal_voc' and 'yolo'"
        )
    if check_validity:
        check_bbox(bbox)

    if target_format != "yolo":
        bbox = denormalize_bbox(bbox, rows, cols)
    if target_format == "coco":
        (x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])
        width = x_max - x_min
        height = y_max - y_min
        bbox = cast(BoxType, (x_min, y_min, width, height) + tail)
    elif target_format == "yolo":
        (x_min, y_min, x_max, y_max), tail = bbox[:4], bbox[4:]
        x = (x_min + x_max) / 2.0
        y = (y_min + y_max) / 2.0
        w = x_max - x_min
        h = y_max - y_min
        bbox = cast(BoxType, (x, y, w, h) + tail)
    return bbox


def convert_bboxes_to_albumentations(
    bboxes: Sequence[BoxType], source_format, rows, cols, check_validity=False
) -> List[BoxType]:
    """Convert a list bounding boxes from a format specified in `source_format` to the format used by albumentations"""
    return [convert_bbox_to_albumentations(bbox, source_format, rows, cols, check_validity) for bbox in bboxes]


def convert_bboxes_from_albumentations(
    bboxes: Sequence[BoxType], target_format: str, rows: int, cols: int, check_validity: bool = False
) -> List[BoxType]:
    """Convert a list of bounding boxes from the format used by albumentations to a format, specified
    in `target_format`.

    Args:
        bboxes: List of albumentation bounding box `(x_min, y_min, x_max, y_max)`.
        target_format: required format of the output bounding box. Should be 'coco', 'pascal_voc' or 'yolo'.
        rows: Image height.
        cols: Image width.
        check_validity: Check if all boxes are valid boxes.

    Returns:
        List of bounding boxes.

    """
    return [convert_bbox_from_albumentations(bbox, target_format, rows, cols, check_validity) for bbox in bboxes]


def check_bbox(bbox: BoxType) -> None:
    """Check if bbox boundaries are in range 0, 1 and minimums are lesser then maximums"""
    for name, value in zip(["x_min", "y_min", "x_max", "y_max"], bbox[:4]):
        if not 0 <= value <= 1 and not np.isclose(value, 0) and not np.isclose(value, 1):
            raise ValueError(f"Expected {name} for bbox {bbox} to be in the range [0.0, 1.0], got {value}.")
    x_min, y_min, x_max, y_max = bbox[:4]
    if x_max <= x_min:
        raise ValueError(f"x_max is less than or equal to x_min for bbox {bbox}.")
    if y_max <= y_min:
        raise ValueError(f"y_max is less than or equal to y_min for bbox {bbox}.")


def check_bboxes(bboxes: Sequence[BoxType]) -> None:
    """Check if bboxes boundaries are in range 0, 1 and minimums are lesser then maximums"""
    for bbox in bboxes:
        check_bbox(bbox)


def filter_bboxes(
    bboxes: Sequence[BoxType],
    rows: int,
    cols: int,
    min_area: float = 0.0,
    min_visibility: float = 0.0,
    min_width: float = 0.0,
    min_height: float = 0.0,
) -> List[BoxType]:
    """Remove bounding boxes that either lie outside of the visible area by more then min_visibility
    or whose area in pixels is under the threshold set by `min_area`. Also it crops boxes to final image size.

    Args:
        bboxes: List of albumentation bounding box `(x_min, y_min, x_max, y_max)`.
        rows: Image height.
        cols: Image width.
        min_area: Minimum area of a bounding box. All bounding boxes whose visible area in pixels.
            is less than this value will be removed. Default: 0.0.
        min_visibility: Minimum fraction of area for a bounding box to remain this box in list. Default: 0.0.
        min_width: Minimum width of a bounding box. All bounding boxes whose width is
            less than this value will be removed. Default: 0.0.
        min_height: Minimum height of a bounding box. All bounding boxes whose height is
            less than this value will be removed. Default: 0.0.

    Returns:
        List of bounding boxes.

    """
    resulting_boxes: List[BoxType] = []
    for bbox in bboxes:
        # Calculate areas of bounding box before and after clipping.
        transformed_box_area = calculate_bbox_area(bbox, rows, cols)
        bbox, tail = cast(BoxType, tuple(np.clip(bbox[:4], 0, 1.0))), tuple(bbox[4:])
        clipped_box_area = calculate_bbox_area(bbox, rows, cols)

        # Calculate width and height of the clipped bounding box.
        x_min, y_min, x_max, y_max = denormalize_bbox(bbox, rows, cols)[:4]
        clipped_width, clipped_height = x_max - x_min, y_max - y_min

        if (
            clipped_box_area != 0  # to ensure transformed_box_area!=0 and to handle min_area=0 or min_visibility=0
            and clipped_box_area >= min_area
            and clipped_box_area / transformed_box_area >= min_visibility
            and clipped_width >= min_width
            and clipped_height >= min_height
        ):
            resulting_boxes.append(cast(BoxType, bbox + tail))
    return resulting_boxes


def union_of_bboxes(height: int, width: int, bboxes: Sequence[BoxType], erosion_rate: float = 0.0) -> BoxType:
    """Calculate union of bounding boxes.

    Args:
        height (float): Height of image or space.
        width (float): Width of image or space.
        bboxes (List[tuple]): List like bounding boxes. Format is `[(x_min, y_min, x_max, y_max)]`.
        erosion_rate (float): How much each bounding box can be shrinked, useful for erosive cropping.
            Set this in range [0, 1]. 0 will not be erosive at all, 1.0 can make any bbox to lose its volume.

    Returns:
        tuple: A bounding box `(x_min, y_min, x_max, y_max)`.

    """
    x1, y1 = width, height
    x2, y2 = 0, 0
    for bbox in bboxes:
        x_min, y_min, x_max, y_max = bbox[:4]
        w, h = x_max - x_min, y_max - y_min
        lim_x1, lim_y1 = x_min + erosion_rate * w, y_min + erosion_rate * h
        lim_x2, lim_y2 = x_max - erosion_rate * w, y_max - erosion_rate * h
        x1, y1 = np.min([x1, lim_x1]), np.min([y1, lim_y1])
        x2, y2 = np.max([x2, lim_x2]), np.max([y2, lim_y2])
    return x1, y1, x2, y2