Spaces:
Configuration error
Configuration error
File size: 20,364 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
from __future__ import division
from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar, cast
import numpy as np
from .transforms_interface import BoxInternalType, BoxType
from .utils import DataProcessor, Params
__all__ = [
"normalize_bbox",
"denormalize_bbox",
"normalize_bboxes",
"denormalize_bboxes",
"calculate_bbox_area",
"filter_bboxes_by_visibility",
"convert_bbox_to_albumentations",
"convert_bbox_from_albumentations",
"convert_bboxes_to_albumentations",
"convert_bboxes_from_albumentations",
"check_bbox",
"check_bboxes",
"filter_bboxes",
"union_of_bboxes",
"BboxProcessor",
"BboxParams",
]
TBox = TypeVar("TBox", BoxType, BoxInternalType)
class BboxParams(Params):
"""
Parameters of bounding boxes
Args:
format (str): format of bounding boxes. Should be 'coco', 'pascal_voc', 'albumentations' or 'yolo'.
The `coco` format
`[x_min, y_min, width, height]`, e.g. [97, 12, 150, 200].
The `pascal_voc` format
`[x_min, y_min, x_max, y_max]`, e.g. [97, 12, 247, 212].
The `albumentations` format
is like `pascal_voc`, but normalized,
in other words: `[x_min, y_min, x_max, y_max]`, e.g. [0.2, 0.3, 0.4, 0.5].
The `yolo` format
`[x, y, width, height]`, e.g. [0.1, 0.2, 0.3, 0.4];
`x`, `y` - normalized bbox center; `width`, `height` - normalized bbox width and height.
label_fields (list): list of fields that are joined with boxes, e.g labels.
Should be same type as boxes.
min_area (float): minimum area of a bounding box. All bounding boxes whose
visible area in pixels is less than this value will be removed. Default: 0.0.
min_visibility (float): minimum fraction of area for a bounding box
to remain this box in list. Default: 0.0.
min_width (float): Minimum width of a bounding box. All bounding boxes whose width is
less than this value will be removed. Default: 0.0.
min_height (float): Minimum height of a bounding box. All bounding boxes whose height is
less than this value will be removed. Default: 0.0.
check_each_transform (bool): if `True`, then bboxes will be checked after each dual transform.
Default: `True`
"""
def __init__(
self,
format: str,
label_fields: Optional[Sequence[str]] = None,
min_area: float = 0.0,
min_visibility: float = 0.0,
min_width: float = 0.0,
min_height: float = 0.0,
check_each_transform: bool = True,
):
super(BboxParams, self).__init__(format, label_fields)
self.min_area = min_area
self.min_visibility = min_visibility
self.min_width = min_width
self.min_height = min_height
self.check_each_transform = check_each_transform
def _to_dict(self) -> Dict[str, Any]:
data = super(BboxParams, self)._to_dict()
data.update(
{
"min_area": self.min_area,
"min_visibility": self.min_visibility,
"min_width": self.min_width,
"min_height": self.min_height,
"check_each_transform": self.check_each_transform,
}
)
return data
@classmethod
def is_serializable(cls) -> bool:
return True
@classmethod
def get_class_fullname(cls) -> str:
return "BboxParams"
class BboxProcessor(DataProcessor):
def __init__(self, params: BboxParams, additional_targets: Optional[Dict[str, str]] = None):
super().__init__(params, additional_targets)
@property
def default_data_name(self) -> str:
return "bboxes"
def ensure_data_valid(self, data: Dict[str, Any]) -> None:
for data_name in self.data_fields:
data_exists = data_name in data and len(data[data_name])
if data_exists and len(data[data_name][0]) < 5:
if self.params.label_fields is None:
raise ValueError(
"Please specify 'label_fields' in 'bbox_params' or add labels to the end of bbox "
"because bboxes must have labels"
)
if self.params.label_fields:
if not all(i in data.keys() for i in self.params.label_fields):
raise ValueError("Your 'label_fields' are not valid - them must have same names as params in dict")
def filter(self, data: Sequence, rows: int, cols: int) -> List:
self.params: BboxParams
return filter_bboxes(
data,
rows,
cols,
min_area=self.params.min_area,
min_visibility=self.params.min_visibility,
min_width=self.params.min_width,
min_height=self.params.min_height,
)
def check(self, data: Sequence, rows: int, cols: int) -> None:
check_bboxes(data)
def convert_from_albumentations(self, data: Sequence, rows: int, cols: int) -> List[BoxType]:
return convert_bboxes_from_albumentations(data, self.params.format, rows, cols, check_validity=True)
def convert_to_albumentations(self, data: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
return convert_bboxes_to_albumentations(data, self.params.format, rows, cols, check_validity=True)
def normalize_bbox(bbox: TBox, rows: int, cols: int) -> TBox:
"""Normalize coordinates of a bounding box. Divide x-coordinates by image width and y-coordinates
by image height.
Args:
bbox: Denormalized bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image height.
cols: Image width.
Returns:
Normalized bounding box `(x_min, y_min, x_max, y_max)`.
Raises:
ValueError: If rows or cols is less or equal zero
"""
if rows <= 0:
raise ValueError("Argument rows must be positive integer")
if cols <= 0:
raise ValueError("Argument cols must be positive integer")
tail: Tuple[Any, ...]
(x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])
x_min, x_max = x_min / cols, x_max / cols
y_min, y_max = y_min / rows, y_max / rows
return cast(BoxType, (x_min, y_min, x_max, y_max) + tail) # type: ignore
def denormalize_bbox(bbox: TBox, rows: int, cols: int) -> TBox:
"""Denormalize coordinates of a bounding box. Multiply x-coordinates by image width and y-coordinates
by image height. This is an inverse operation for :func:`~albumentations.augmentations.bbox.normalize_bbox`.
Args:
bbox: Normalized bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image height.
cols: Image width.
Returns:
Denormalized bounding box `(x_min, y_min, x_max, y_max)`.
Raises:
ValueError: If rows or cols is less or equal zero
"""
tail: Tuple[Any, ...]
(x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])
if rows <= 0:
raise ValueError("Argument rows must be positive integer")
if cols <= 0:
raise ValueError("Argument cols must be positive integer")
x_min, x_max = x_min * cols, x_max * cols
y_min, y_max = y_min * rows, y_max * rows
return cast(BoxType, (x_min, y_min, x_max, y_max) + tail) # type: ignore
def normalize_bboxes(bboxes: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
"""Normalize a list of bounding boxes.
Args:
bboxes: Denormalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
rows: Image height.
cols: Image width.
Returns:
Normalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
"""
return [normalize_bbox(bbox, rows, cols) for bbox in bboxes]
def denormalize_bboxes(bboxes: Sequence[BoxType], rows: int, cols: int) -> List[BoxType]:
"""Denormalize a list of bounding boxes.
Args:
bboxes: Normalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
rows: Image height.
cols: Image width.
Returns:
List: Denormalized bounding boxes `[(x_min, y_min, x_max, y_max)]`.
"""
return [denormalize_bbox(bbox, rows, cols) for bbox in bboxes]
def calculate_bbox_area(bbox: BoxType, rows: int, cols: int) -> float:
"""Calculate the area of a bounding box in (fractional) pixels.
Args:
bbox: A bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image height.
cols: Image width.
Return:
Area in (fractional) pixels of the (denormalized) bounding box.
"""
bbox = denormalize_bbox(bbox, rows, cols)
x_min, y_min, x_max, y_max = bbox[:4]
area = (x_max - x_min) * (y_max - y_min)
return area
def filter_bboxes_by_visibility(
original_shape: Sequence[int],
bboxes: Sequence[BoxType],
transformed_shape: Sequence[int],
transformed_bboxes: Sequence[BoxType],
threshold: float = 0.0,
min_area: float = 0.0,
) -> List[BoxType]:
"""Filter bounding boxes and return only those boxes whose visibility after transformation is above
the threshold and minimal area of bounding box in pixels is more then min_area.
Args:
original_shape: Original image shape `(height, width, ...)`.
bboxes: Original bounding boxes `[(x_min, y_min, x_max, y_max)]`.
transformed_shape: Transformed image shape `(height, width)`.
transformed_bboxes: Transformed bounding boxes `[(x_min, y_min, x_max, y_max)]`.
threshold: visibility threshold. Should be a value in the range [0.0, 1.0].
min_area: Minimal area threshold.
Returns:
Filtered bounding boxes `[(x_min, y_min, x_max, y_max)]`.
"""
img_height, img_width = original_shape[:2]
transformed_img_height, transformed_img_width = transformed_shape[:2]
visible_bboxes = []
for bbox, transformed_bbox in zip(bboxes, transformed_bboxes):
if not all(0.0 <= value <= 1.0 for value in transformed_bbox[:4]):
continue
bbox_area = calculate_bbox_area(bbox, img_height, img_width)
transformed_bbox_area = calculate_bbox_area(transformed_bbox, transformed_img_height, transformed_img_width)
if transformed_bbox_area < min_area:
continue
visibility = transformed_bbox_area / bbox_area
if visibility >= threshold:
visible_bboxes.append(transformed_bbox)
return visible_bboxes
def convert_bbox_to_albumentations(
bbox: BoxType, source_format: str, rows: int, cols: int, check_validity: bool = False
) -> BoxType:
"""Convert a bounding box from a format specified in `source_format` to the format used by albumentations:
normalized coordinates of top-left and bottom-right corners of the bounding box in a form of
`(x_min, y_min, x_max, y_max)` e.g. `(0.15, 0.27, 0.67, 0.5)`.
Args:
bbox: A bounding box tuple.
source_format: format of the bounding box. Should be 'coco', 'pascal_voc', or 'yolo'.
check_validity: Check if all boxes are valid boxes.
rows: Image height.
cols: Image width.
Returns:
tuple: A bounding box `(x_min, y_min, x_max, y_max)`.
Note:
The `coco` format of a bounding box looks like `(x_min, y_min, width, height)`, e.g. (97, 12, 150, 200).
The `pascal_voc` format of a bounding box looks like `(x_min, y_min, x_max, y_max)`, e.g. (97, 12, 247, 212).
The `yolo` format of a bounding box looks like `(x, y, width, height)`, e.g. (0.3, 0.1, 0.05, 0.07);
where `x`, `y` coordinates of the center of the box, all values normalized to 1 by image height and width.
Raises:
ValueError: if `target_format` is not equal to `coco` or `pascal_voc`, or `yolo`.
ValueError: If in YOLO format all labels not in range (0, 1).
"""
if source_format not in {"coco", "pascal_voc", "yolo"}:
raise ValueError(
f"Unknown source_format {source_format}. Supported formats are: 'coco', 'pascal_voc' and 'yolo'"
)
if source_format == "coco":
(x_min, y_min, width, height), tail = bbox[:4], bbox[4:]
x_max = x_min + width
y_max = y_min + height
elif source_format == "yolo":
# https://github.com/pjreddie/darknet/blob/f6d861736038da22c9eb0739dca84003c5a5e275/scripts/voc_label.py#L12
_bbox = np.array(bbox[:4])
if check_validity and np.any((_bbox <= 0) | (_bbox > 1)):
raise ValueError("In YOLO format all coordinates must be float and in range (0, 1]")
(x, y, w, h), tail = bbox[:4], bbox[4:]
w_half, h_half = w / 2, h / 2
x_min = x - w_half
y_min = y - h_half
x_max = x_min + w
y_max = y_min + h
else:
(x_min, y_min, x_max, y_max), tail = bbox[:4], bbox[4:]
bbox = (x_min, y_min, x_max, y_max) + tuple(tail) # type: ignore
if source_format != "yolo":
bbox = normalize_bbox(bbox, rows, cols)
if check_validity:
check_bbox(bbox)
return bbox
def convert_bbox_from_albumentations(
bbox: BoxType, target_format: str, rows: int, cols: int, check_validity: bool = False
) -> BoxType:
"""Convert a bounding box from the format used by albumentations to a format, specified in `target_format`.
Args:
bbox: An albumentations bounding box `(x_min, y_min, x_max, y_max)`.
target_format: required format of the output bounding box. Should be 'coco', 'pascal_voc' or 'yolo'.
rows: Image height.
cols: Image width.
check_validity: Check if all boxes are valid boxes.
Returns:
tuple: A bounding box.
Note:
The `coco` format of a bounding box looks like `[x_min, y_min, width, height]`, e.g. [97, 12, 150, 200].
The `pascal_voc` format of a bounding box looks like `[x_min, y_min, x_max, y_max]`, e.g. [97, 12, 247, 212].
The `yolo` format of a bounding box looks like `[x, y, width, height]`, e.g. [0.3, 0.1, 0.05, 0.07].
Raises:
ValueError: if `target_format` is not equal to `coco`, `pascal_voc` or `yolo`.
"""
if target_format not in {"coco", "pascal_voc", "yolo"}:
raise ValueError(
f"Unknown target_format {target_format}. Supported formats are: 'coco', 'pascal_voc' and 'yolo'"
)
if check_validity:
check_bbox(bbox)
if target_format != "yolo":
bbox = denormalize_bbox(bbox, rows, cols)
if target_format == "coco":
(x_min, y_min, x_max, y_max), tail = bbox[:4], tuple(bbox[4:])
width = x_max - x_min
height = y_max - y_min
bbox = cast(BoxType, (x_min, y_min, width, height) + tail)
elif target_format == "yolo":
(x_min, y_min, x_max, y_max), tail = bbox[:4], bbox[4:]
x = (x_min + x_max) / 2.0
y = (y_min + y_max) / 2.0
w = x_max - x_min
h = y_max - y_min
bbox = cast(BoxType, (x, y, w, h) + tail)
return bbox
def convert_bboxes_to_albumentations(
bboxes: Sequence[BoxType], source_format, rows, cols, check_validity=False
) -> List[BoxType]:
"""Convert a list bounding boxes from a format specified in `source_format` to the format used by albumentations"""
return [convert_bbox_to_albumentations(bbox, source_format, rows, cols, check_validity) for bbox in bboxes]
def convert_bboxes_from_albumentations(
bboxes: Sequence[BoxType], target_format: str, rows: int, cols: int, check_validity: bool = False
) -> List[BoxType]:
"""Convert a list of bounding boxes from the format used by albumentations to a format, specified
in `target_format`.
Args:
bboxes: List of albumentation bounding box `(x_min, y_min, x_max, y_max)`.
target_format: required format of the output bounding box. Should be 'coco', 'pascal_voc' or 'yolo'.
rows: Image height.
cols: Image width.
check_validity: Check if all boxes are valid boxes.
Returns:
List of bounding boxes.
"""
return [convert_bbox_from_albumentations(bbox, target_format, rows, cols, check_validity) for bbox in bboxes]
def check_bbox(bbox: BoxType) -> None:
"""Check if bbox boundaries are in range 0, 1 and minimums are lesser then maximums"""
for name, value in zip(["x_min", "y_min", "x_max", "y_max"], bbox[:4]):
if not 0 <= value <= 1 and not np.isclose(value, 0) and not np.isclose(value, 1):
raise ValueError(f"Expected {name} for bbox {bbox} to be in the range [0.0, 1.0], got {value}.")
x_min, y_min, x_max, y_max = bbox[:4]
if x_max <= x_min:
raise ValueError(f"x_max is less than or equal to x_min for bbox {bbox}.")
if y_max <= y_min:
raise ValueError(f"y_max is less than or equal to y_min for bbox {bbox}.")
def check_bboxes(bboxes: Sequence[BoxType]) -> None:
"""Check if bboxes boundaries are in range 0, 1 and minimums are lesser then maximums"""
for bbox in bboxes:
check_bbox(bbox)
def filter_bboxes(
bboxes: Sequence[BoxType],
rows: int,
cols: int,
min_area: float = 0.0,
min_visibility: float = 0.0,
min_width: float = 0.0,
min_height: float = 0.0,
) -> List[BoxType]:
"""Remove bounding boxes that either lie outside of the visible area by more then min_visibility
or whose area in pixels is under the threshold set by `min_area`. Also it crops boxes to final image size.
Args:
bboxes: List of albumentation bounding box `(x_min, y_min, x_max, y_max)`.
rows: Image height.
cols: Image width.
min_area: Minimum area of a bounding box. All bounding boxes whose visible area in pixels.
is less than this value will be removed. Default: 0.0.
min_visibility: Minimum fraction of area for a bounding box to remain this box in list. Default: 0.0.
min_width: Minimum width of a bounding box. All bounding boxes whose width is
less than this value will be removed. Default: 0.0.
min_height: Minimum height of a bounding box. All bounding boxes whose height is
less than this value will be removed. Default: 0.0.
Returns:
List of bounding boxes.
"""
resulting_boxes: List[BoxType] = []
for bbox in bboxes:
# Calculate areas of bounding box before and after clipping.
transformed_box_area = calculate_bbox_area(bbox, rows, cols)
bbox, tail = cast(BoxType, tuple(np.clip(bbox[:4], 0, 1.0))), tuple(bbox[4:])
clipped_box_area = calculate_bbox_area(bbox, rows, cols)
# Calculate width and height of the clipped bounding box.
x_min, y_min, x_max, y_max = denormalize_bbox(bbox, rows, cols)[:4]
clipped_width, clipped_height = x_max - x_min, y_max - y_min
if (
clipped_box_area != 0 # to ensure transformed_box_area!=0 and to handle min_area=0 or min_visibility=0
and clipped_box_area >= min_area
and clipped_box_area / transformed_box_area >= min_visibility
and clipped_width >= min_width
and clipped_height >= min_height
):
resulting_boxes.append(cast(BoxType, bbox + tail))
return resulting_boxes
def union_of_bboxes(height: int, width: int, bboxes: Sequence[BoxType], erosion_rate: float = 0.0) -> BoxType:
"""Calculate union of bounding boxes.
Args:
height (float): Height of image or space.
width (float): Width of image or space.
bboxes (List[tuple]): List like bounding boxes. Format is `[(x_min, y_min, x_max, y_max)]`.
erosion_rate (float): How much each bounding box can be shrinked, useful for erosive cropping.
Set this in range [0, 1]. 0 will not be erosive at all, 1.0 can make any bbox to lose its volume.
Returns:
tuple: A bounding box `(x_min, y_min, x_max, y_max)`.
"""
x1, y1 = width, height
x2, y2 = 0, 0
for bbox in bboxes:
x_min, y_min, x_max, y_max = bbox[:4]
w, h = x_max - x_min, y_max - y_min
lim_x1, lim_y1 = x_min + erosion_rate * w, y_min + erosion_rate * h
lim_x2, lim_y2 = x_max - erosion_rate * w, y_max - erosion_rate * h
x1, y1 = np.min([x1, lim_x1]), np.min([y1, lim_y1])
x2, y2 = np.max([x2, lim_x2]), np.max([y2, lim_y2])
return x1, y1, x2, y2
|