Spaces:
Configuration error
Configuration error
File size: 22,273 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
from __future__ import division
import random
import typing
import warnings
from collections import defaultdict
import numpy as np
from .. import random_utils
from .bbox_utils import BboxParams, BboxProcessor
from .keypoints_utils import KeypointParams, KeypointsProcessor
from .serialization import (
SERIALIZABLE_REGISTRY,
Serializable,
get_shortest_class_fullname,
instantiate_nonserializable,
)
from .transforms_interface import BasicTransform
from .utils import format_args, get_shape
__all__ = [
"BaseCompose",
"Compose",
"SomeOf",
"OneOf",
"OneOrOther",
"BboxParams",
"KeypointParams",
"ReplayCompose",
"Sequential",
]
REPR_INDENT_STEP = 2
TransformType = typing.Union[BasicTransform, "BaseCompose"]
TransformsSeqType = typing.Sequence[TransformType]
def get_always_apply(transforms: typing.Union["BaseCompose", TransformsSeqType]) -> TransformsSeqType:
new_transforms: typing.List[TransformType] = []
for transform in transforms: # type: ignore
if isinstance(transform, BaseCompose):
new_transforms.extend(get_always_apply(transform))
elif transform.always_apply:
new_transforms.append(transform)
return new_transforms
class BaseCompose(Serializable):
def __init__(self, transforms: TransformsSeqType, p: float):
if isinstance(transforms, (BaseCompose, BasicTransform)):
warnings.warn(
"transforms is single transform, but a sequence is expected! Transform will be wrapped into list."
)
transforms = [transforms]
self.transforms = transforms
self.p = p
self.replay_mode = False
self.applied_in_replay = False
def __len__(self) -> int:
return len(self.transforms)
def __call__(self, *args, **data) -> typing.Dict[str, typing.Any]:
raise NotImplementedError
def __getitem__(self, item: int) -> TransformType: # type: ignore
return self.transforms[item]
def __repr__(self) -> str:
return self.indented_repr()
def indented_repr(self, indent: int = REPR_INDENT_STEP) -> str:
args = {k: v for k, v in self._to_dict().items() if not (k.startswith("__") or k == "transforms")}
repr_string = self.__class__.__name__ + "(["
for t in self.transforms:
repr_string += "\n"
if hasattr(t, "indented_repr"):
t_repr = t.indented_repr(indent + REPR_INDENT_STEP) # type: ignore
else:
t_repr = repr(t)
repr_string += " " * indent + t_repr + ","
repr_string += "\n" + " " * (indent - REPR_INDENT_STEP) + "], {args})".format(args=format_args(args))
return repr_string
@classmethod
def get_class_fullname(cls) -> str:
return get_shortest_class_fullname(cls)
@classmethod
def is_serializable(cls) -> bool:
return True
def _to_dict(self) -> typing.Dict[str, typing.Any]:
return {
"__class_fullname__": self.get_class_fullname(),
"p": self.p,
"transforms": [t._to_dict() for t in self.transforms], # skipcq: PYL-W0212
}
def get_dict_with_id(self) -> typing.Dict[str, typing.Any]:
return {
"__class_fullname__": self.get_class_fullname(),
"id": id(self),
"params": None,
"transforms": [t.get_dict_with_id() for t in self.transforms],
}
def add_targets(self, additional_targets: typing.Optional[typing.Dict[str, str]]) -> None:
if additional_targets:
for t in self.transforms:
t.add_targets(additional_targets)
def set_deterministic(self, flag: bool, save_key: str = "replay") -> None:
for t in self.transforms:
t.set_deterministic(flag, save_key)
class Compose(BaseCompose):
"""Compose transforms and handle all transformations regarding bounding boxes
Args:
transforms (list): list of transformations to compose.
bbox_params (BboxParams): Parameters for bounding boxes transforms
keypoint_params (KeypointParams): Parameters for keypoints transforms
additional_targets (dict): Dict with keys - new target name, values - old target name. ex: {'image2': 'image'}
p (float): probability of applying all list of transforms. Default: 1.0.
is_check_shapes (bool): If True shapes consistency of images/mask/masks would be checked on each call. If you
would like to disable this check - pass False (do it only if you are sure in your data consistency).
"""
def __init__(
self,
transforms: TransformsSeqType,
bbox_params: typing.Optional[typing.Union[dict, "BboxParams"]] = None,
keypoint_params: typing.Optional[typing.Union[dict, "KeypointParams"]] = None,
additional_targets: typing.Optional[typing.Dict[str, str]] = None,
p: float = 1.0,
is_check_shapes: bool = True,
):
super(Compose, self).__init__(transforms, p)
self.processors: typing.Dict[str, typing.Union[BboxProcessor, KeypointsProcessor]] = {}
if bbox_params:
if isinstance(bbox_params, dict):
b_params = BboxParams(**bbox_params)
elif isinstance(bbox_params, BboxParams):
b_params = bbox_params
else:
raise ValueError("unknown format of bbox_params, please use `dict` or `BboxParams`")
self.processors["bboxes"] = BboxProcessor(b_params, additional_targets)
if keypoint_params:
if isinstance(keypoint_params, dict):
k_params = KeypointParams(**keypoint_params)
elif isinstance(keypoint_params, KeypointParams):
k_params = keypoint_params
else:
raise ValueError("unknown format of keypoint_params, please use `dict` or `KeypointParams`")
self.processors["keypoints"] = KeypointsProcessor(k_params, additional_targets)
if additional_targets is None:
additional_targets = {}
self.additional_targets = additional_targets
for proc in self.processors.values():
proc.ensure_transforms_valid(self.transforms)
self.add_targets(additional_targets)
self.is_check_args = True
self._disable_check_args_for_transforms(self.transforms)
self.is_check_shapes = is_check_shapes
@staticmethod
def _disable_check_args_for_transforms(transforms: TransformsSeqType) -> None:
for transform in transforms:
if isinstance(transform, BaseCompose):
Compose._disable_check_args_for_transforms(transform.transforms)
if isinstance(transform, Compose):
transform._disable_check_args()
def _disable_check_args(self) -> None:
self.is_check_args = False
def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
if args:
raise KeyError("You have to pass data to augmentations as named arguments, for example: aug(image=image)")
if self.is_check_args:
self._check_args(**data)
assert isinstance(force_apply, (bool, int)), "force_apply must have bool or int type"
need_to_run = force_apply or random.random() < self.p
for p in self.processors.values():
p.ensure_data_valid(data)
transforms = self.transforms if need_to_run else get_always_apply(self.transforms)
check_each_transform = any(
getattr(item.params, "check_each_transform", False) for item in self.processors.values()
)
for p in self.processors.values():
p.preprocess(data)
for idx, t in enumerate(transforms):
data = t(**data)
if check_each_transform:
data = self._check_data_post_transform(data)
data = Compose._make_targets_contiguous(data) # ensure output targets are contiguous
for p in self.processors.values():
p.postprocess(data)
return data
def _check_data_post_transform(self, data: typing.Dict[str, typing.Any]) -> typing.Dict[str, typing.Any]:
rows, cols = get_shape(data["image"])
for p in self.processors.values():
if not getattr(p.params, "check_each_transform", False):
continue
for data_name in p.data_fields:
data[data_name] = p.filter(data[data_name], rows, cols)
return data
def _to_dict(self) -> typing.Dict[str, typing.Any]:
dictionary = super(Compose, self)._to_dict()
bbox_processor = self.processors.get("bboxes")
keypoints_processor = self.processors.get("keypoints")
dictionary.update(
{
"bbox_params": bbox_processor.params._to_dict() if bbox_processor else None, # skipcq: PYL-W0212
"keypoint_params": keypoints_processor.params._to_dict() # skipcq: PYL-W0212
if keypoints_processor
else None,
"additional_targets": self.additional_targets,
"is_check_shapes": self.is_check_shapes,
}
)
return dictionary
def get_dict_with_id(self) -> typing.Dict[str, typing.Any]:
dictionary = super().get_dict_with_id()
bbox_processor = self.processors.get("bboxes")
keypoints_processor = self.processors.get("keypoints")
dictionary.update(
{
"bbox_params": bbox_processor.params._to_dict() if bbox_processor else None, # skipcq: PYL-W0212
"keypoint_params": keypoints_processor.params._to_dict() # skipcq: PYL-W0212
if keypoints_processor
else None,
"additional_targets": self.additional_targets,
"params": None,
"is_check_shapes": self.is_check_shapes,
}
)
return dictionary
def _check_args(self, **kwargs) -> None:
checked_single = ["image", "mask"]
checked_multi = ["masks"]
check_bbox_param = ["bboxes"]
# ["bboxes", "keypoints"] could be almost any type, no need to check them
shapes = []
for data_name, data in kwargs.items():
internal_data_name = self.additional_targets.get(data_name, data_name)
if internal_data_name in checked_single:
if not isinstance(data, np.ndarray):
raise TypeError("{} must be numpy array type".format(data_name))
shapes.append(data.shape[:2])
if internal_data_name in checked_multi:
if data is not None and len(data):
if not isinstance(data[0], np.ndarray):
raise TypeError("{} must be list of numpy arrays".format(data_name))
shapes.append(data[0].shape[:2])
if internal_data_name in check_bbox_param and self.processors.get("bboxes") is None:
raise ValueError("bbox_params must be specified for bbox transformations")
if self.is_check_shapes and shapes and shapes.count(shapes[0]) != len(shapes):
raise ValueError(
"Height and Width of image, mask or masks should be equal. You can disable shapes check "
"by setting a parameter is_check_shapes=False of Compose class (do it only if you are sure "
"about your data consistency)."
)
@staticmethod
def _make_targets_contiguous(data: typing.Dict[str, typing.Any]) -> typing.Dict[str, typing.Any]:
result = {}
for key, value in data.items():
if isinstance(value, np.ndarray):
value = np.ascontiguousarray(value)
result[key] = value
return result
class OneOf(BaseCompose):
"""Select one of transforms to apply. Selected transform will be called with `force_apply=True`.
Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.
Args:
transforms (list): list of transformations to compose.
p (float): probability of applying selected transform. Default: 0.5.
"""
def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
super(OneOf, self).__init__(transforms, p)
transforms_ps = [t.p for t in self.transforms]
s = sum(transforms_ps)
self.transforms_ps = [t / s for t in transforms_ps]
def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
return data
if self.transforms_ps and (force_apply or random.random() < self.p):
idx: int = random_utils.choice(len(self.transforms), p=self.transforms_ps)
t = self.transforms[idx]
data = t(force_apply=True, **data)
return data
class SomeOf(BaseCompose):
"""Select N transforms to apply. Selected transforms will be called with `force_apply=True`.
Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.
Args:
transforms (list): list of transformations to compose.
n (int): number of transforms to apply.
replace (bool): Whether the sampled transforms are with or without replacement. Default: True.
p (float): probability of applying selected transform. Default: 1.
"""
def __init__(self, transforms: TransformsSeqType, n: int, replace: bool = True, p: float = 1):
super(SomeOf, self).__init__(transforms, p)
self.n = n
self.replace = replace
transforms_ps = [t.p for t in self.transforms]
s = sum(transforms_ps)
self.transforms_ps = [t / s for t in transforms_ps]
def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
return data
if self.transforms_ps and (force_apply or random.random() < self.p):
idx = random_utils.choice(len(self.transforms), size=self.n, replace=self.replace, p=self.transforms_ps)
for i in idx: # type: ignore
t = self.transforms[i]
data = t(force_apply=True, **data)
return data
def _to_dict(self) -> typing.Dict[str, typing.Any]:
dictionary = super(SomeOf, self)._to_dict()
dictionary.update({"n": self.n, "replace": self.replace})
return dictionary
class OneOrOther(BaseCompose):
"""Select one or another transform to apply. Selected transform will be called with `force_apply=True`."""
def __init__(
self,
first: typing.Optional[TransformType] = None,
second: typing.Optional[TransformType] = None,
transforms: typing.Optional[TransformsSeqType] = None,
p: float = 0.5,
):
if transforms is None:
if first is None or second is None:
raise ValueError("You must set both first and second or set transforms argument.")
transforms = [first, second]
super(OneOrOther, self).__init__(transforms, p)
if len(self.transforms) != 2:
warnings.warn("Length of transforms is not equal to 2.")
def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
return data
if random.random() < self.p:
return self.transforms[0](force_apply=True, **data)
return self.transforms[-1](force_apply=True, **data)
class PerChannel(BaseCompose):
"""Apply transformations per-channel
Args:
transforms (list): list of transformations to compose.
channels (sequence): channels to apply the transform to. Pass None to apply to all.
Default: None (apply to all)
p (float): probability of applying the transform. Default: 0.5.
"""
def __init__(
self, transforms: TransformsSeqType, channels: typing.Optional[typing.Sequence[int]] = None, p: float = 0.5
):
super(PerChannel, self).__init__(transforms, p)
self.channels = channels
def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
if force_apply or random.random() < self.p:
image = data["image"]
# Expand mono images to have a single channel
if len(image.shape) == 2:
image = np.expand_dims(image, -1)
if self.channels is None:
self.channels = range(image.shape[2])
for c in self.channels:
for t in self.transforms:
image[:, :, c] = t(image=image[:, :, c])["image"]
data["image"] = image
return data
class ReplayCompose(Compose):
def __init__(
self,
transforms: TransformsSeqType,
bbox_params: typing.Optional[typing.Union[dict, "BboxParams"]] = None,
keypoint_params: typing.Optional[typing.Union[dict, "KeypointParams"]] = None,
additional_targets: typing.Optional[typing.Dict[str, str]] = None,
p: float = 1.0,
is_check_shapes: bool = True,
save_key: str = "replay",
):
super(ReplayCompose, self).__init__(
transforms, bbox_params, keypoint_params, additional_targets, p, is_check_shapes
)
self.set_deterministic(True, save_key=save_key)
self.save_key = save_key
def __call__(self, *args, force_apply: bool = False, **kwargs) -> typing.Dict[str, typing.Any]:
kwargs[self.save_key] = defaultdict(dict)
result = super(ReplayCompose, self).__call__(force_apply=force_apply, **kwargs)
serialized = self.get_dict_with_id()
self.fill_with_params(serialized, result[self.save_key])
self.fill_applied(serialized)
result[self.save_key] = serialized
return result
@staticmethod
def replay(saved_augmentations: typing.Dict[str, typing.Any], **kwargs) -> typing.Dict[str, typing.Any]:
augs = ReplayCompose._restore_for_replay(saved_augmentations)
return augs(force_apply=True, **kwargs)
@staticmethod
def _restore_for_replay(
transform_dict: typing.Dict[str, typing.Any], lambda_transforms: typing.Optional[dict] = None
) -> TransformType:
"""
Args:
lambda_transforms (dict): A dictionary that contains lambda transforms, that
is instances of the Lambda class.
This dictionary is required when you are restoring a pipeline that contains lambda transforms. Keys
in that dictionary should be named same as `name` arguments in respective lambda transforms from
a serialized pipeline.
"""
applied = transform_dict["applied"]
params = transform_dict["params"]
lmbd = instantiate_nonserializable(transform_dict, lambda_transforms)
if lmbd:
transform = lmbd
else:
name = transform_dict["__class_fullname__"]
args = {k: v for k, v in transform_dict.items() if k not in ["__class_fullname__", "applied", "params"]}
cls = SERIALIZABLE_REGISTRY[name]
if "transforms" in args:
args["transforms"] = [
ReplayCompose._restore_for_replay(t, lambda_transforms=lambda_transforms)
for t in args["transforms"]
]
transform = cls(**args)
transform = typing.cast(BasicTransform, transform)
if isinstance(transform, BasicTransform):
transform.params = params
transform.replay_mode = True
transform.applied_in_replay = applied
return transform
def fill_with_params(self, serialized: dict, all_params: dict) -> None:
params = all_params.get(serialized.get("id"))
serialized["params"] = params
del serialized["id"]
for transform in serialized.get("transforms", []):
self.fill_with_params(transform, all_params)
def fill_applied(self, serialized: typing.Dict[str, typing.Any]) -> bool:
if "transforms" in serialized:
applied = [self.fill_applied(t) for t in serialized["transforms"]]
serialized["applied"] = any(applied)
else:
serialized["applied"] = serialized.get("params") is not None
return serialized["applied"]
def _to_dict(self) -> typing.Dict[str, typing.Any]:
dictionary = super(ReplayCompose, self)._to_dict()
dictionary.update({"save_key": self.save_key})
return dictionary
class Sequential(BaseCompose):
"""Sequentially applies all transforms to targets.
Note:
This transform is not intended to be a replacement for `Compose`. Instead, it should be used inside `Compose`
the same way `OneOf` or `OneOrOther` are used. For instance, you can combine `OneOf` with `Sequential` to
create an augmentation pipeline that contains multiple sequences of augmentations and applies one randomly
chose sequence to input data (see the `Example` section for an example definition of such pipeline).
Example:
>>> import custom_albumentations as albumentations as A
>>> transform = A.Compose([
>>> A.OneOf([
>>> A.Sequential([
>>> A.HorizontalFlip(p=0.5),
>>> A.ShiftScaleRotate(p=0.5),
>>> ]),
>>> A.Sequential([
>>> A.VerticalFlip(p=0.5),
>>> A.RandomBrightnessContrast(p=0.5),
>>> ]),
>>> ], p=1)
>>> ])
"""
def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
super().__init__(transforms, p)
def __call__(self, *args, **data) -> typing.Dict[str, typing.Any]:
for t in self.transforms:
data = t(**data)
return data
|