File size: 22,273 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
from __future__ import division

import random
import typing
import warnings
from collections import defaultdict

import numpy as np

from .. import random_utils
from .bbox_utils import BboxParams, BboxProcessor
from .keypoints_utils import KeypointParams, KeypointsProcessor
from .serialization import (
    SERIALIZABLE_REGISTRY,
    Serializable,
    get_shortest_class_fullname,
    instantiate_nonserializable,
)
from .transforms_interface import BasicTransform
from .utils import format_args, get_shape

__all__ = [
    "BaseCompose",
    "Compose",
    "SomeOf",
    "OneOf",
    "OneOrOther",
    "BboxParams",
    "KeypointParams",
    "ReplayCompose",
    "Sequential",
]


REPR_INDENT_STEP = 2
TransformType = typing.Union[BasicTransform, "BaseCompose"]
TransformsSeqType = typing.Sequence[TransformType]


def get_always_apply(transforms: typing.Union["BaseCompose", TransformsSeqType]) -> TransformsSeqType:
    new_transforms: typing.List[TransformType] = []
    for transform in transforms:  # type: ignore
        if isinstance(transform, BaseCompose):
            new_transforms.extend(get_always_apply(transform))
        elif transform.always_apply:
            new_transforms.append(transform)
    return new_transforms


class BaseCompose(Serializable):
    def __init__(self, transforms: TransformsSeqType, p: float):
        if isinstance(transforms, (BaseCompose, BasicTransform)):
            warnings.warn(
                "transforms is single transform, but a sequence is expected! Transform will be wrapped into list."
            )
            transforms = [transforms]

        self.transforms = transforms
        self.p = p

        self.replay_mode = False
        self.applied_in_replay = False

    def __len__(self) -> int:
        return len(self.transforms)

    def __call__(self, *args, **data) -> typing.Dict[str, typing.Any]:
        raise NotImplementedError

    def __getitem__(self, item: int) -> TransformType:  # type: ignore
        return self.transforms[item]

    def __repr__(self) -> str:
        return self.indented_repr()

    def indented_repr(self, indent: int = REPR_INDENT_STEP) -> str:
        args = {k: v for k, v in self._to_dict().items() if not (k.startswith("__") or k == "transforms")}
        repr_string = self.__class__.__name__ + "(["
        for t in self.transforms:
            repr_string += "\n"
            if hasattr(t, "indented_repr"):
                t_repr = t.indented_repr(indent + REPR_INDENT_STEP)  # type: ignore
            else:
                t_repr = repr(t)
            repr_string += " " * indent + t_repr + ","
        repr_string += "\n" + " " * (indent - REPR_INDENT_STEP) + "], {args})".format(args=format_args(args))
        return repr_string

    @classmethod
    def get_class_fullname(cls) -> str:
        return get_shortest_class_fullname(cls)

    @classmethod
    def is_serializable(cls) -> bool:
        return True

    def _to_dict(self) -> typing.Dict[str, typing.Any]:
        return {
            "__class_fullname__": self.get_class_fullname(),
            "p": self.p,
            "transforms": [t._to_dict() for t in self.transforms],  # skipcq: PYL-W0212
        }

    def get_dict_with_id(self) -> typing.Dict[str, typing.Any]:
        return {
            "__class_fullname__": self.get_class_fullname(),
            "id": id(self),
            "params": None,
            "transforms": [t.get_dict_with_id() for t in self.transforms],
        }

    def add_targets(self, additional_targets: typing.Optional[typing.Dict[str, str]]) -> None:
        if additional_targets:
            for t in self.transforms:
                t.add_targets(additional_targets)

    def set_deterministic(self, flag: bool, save_key: str = "replay") -> None:
        for t in self.transforms:
            t.set_deterministic(flag, save_key)


class Compose(BaseCompose):
    """Compose transforms and handle all transformations regarding bounding boxes

    Args:
        transforms (list): list of transformations to compose.
        bbox_params (BboxParams): Parameters for bounding boxes transforms
        keypoint_params (KeypointParams): Parameters for keypoints transforms
        additional_targets (dict): Dict with keys - new target name, values - old target name. ex: {'image2': 'image'}
        p (float): probability of applying all list of transforms. Default: 1.0.
        is_check_shapes (bool): If True shapes consistency of images/mask/masks would be checked on each call. If you
            would like to disable this check - pass False (do it only if you are sure in your data consistency).
    """

    def __init__(
        self,
        transforms: TransformsSeqType,
        bbox_params: typing.Optional[typing.Union[dict, "BboxParams"]] = None,
        keypoint_params: typing.Optional[typing.Union[dict, "KeypointParams"]] = None,
        additional_targets: typing.Optional[typing.Dict[str, str]] = None,
        p: float = 1.0,
        is_check_shapes: bool = True,
    ):
        super(Compose, self).__init__(transforms, p)

        self.processors: typing.Dict[str, typing.Union[BboxProcessor, KeypointsProcessor]] = {}
        if bbox_params:
            if isinstance(bbox_params, dict):
                b_params = BboxParams(**bbox_params)
            elif isinstance(bbox_params, BboxParams):
                b_params = bbox_params
            else:
                raise ValueError("unknown format of bbox_params, please use `dict` or `BboxParams`")
            self.processors["bboxes"] = BboxProcessor(b_params, additional_targets)

        if keypoint_params:
            if isinstance(keypoint_params, dict):
                k_params = KeypointParams(**keypoint_params)
            elif isinstance(keypoint_params, KeypointParams):
                k_params = keypoint_params
            else:
                raise ValueError("unknown format of keypoint_params, please use `dict` or `KeypointParams`")
            self.processors["keypoints"] = KeypointsProcessor(k_params, additional_targets)

        if additional_targets is None:
            additional_targets = {}

        self.additional_targets = additional_targets

        for proc in self.processors.values():
            proc.ensure_transforms_valid(self.transforms)

        self.add_targets(additional_targets)

        self.is_check_args = True
        self._disable_check_args_for_transforms(self.transforms)

        self.is_check_shapes = is_check_shapes

    @staticmethod
    def _disable_check_args_for_transforms(transforms: TransformsSeqType) -> None:
        for transform in transforms:
            if isinstance(transform, BaseCompose):
                Compose._disable_check_args_for_transforms(transform.transforms)
            if isinstance(transform, Compose):
                transform._disable_check_args()

    def _disable_check_args(self) -> None:
        self.is_check_args = False

    def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
        if args:
            raise KeyError("You have to pass data to augmentations as named arguments, for example: aug(image=image)")
        if self.is_check_args:
            self._check_args(**data)
        assert isinstance(force_apply, (bool, int)), "force_apply must have bool or int type"
        need_to_run = force_apply or random.random() < self.p
        for p in self.processors.values():
            p.ensure_data_valid(data)
        transforms = self.transforms if need_to_run else get_always_apply(self.transforms)

        check_each_transform = any(
            getattr(item.params, "check_each_transform", False) for item in self.processors.values()
        )

        for p in self.processors.values():
            p.preprocess(data)

        for idx, t in enumerate(transforms):
            data = t(**data)

            if check_each_transform:
                data = self._check_data_post_transform(data)
        data = Compose._make_targets_contiguous(data)  # ensure output targets are contiguous

        for p in self.processors.values():
            p.postprocess(data)

        return data

    def _check_data_post_transform(self, data: typing.Dict[str, typing.Any]) -> typing.Dict[str, typing.Any]:
        rows, cols = get_shape(data["image"])

        for p in self.processors.values():
            if not getattr(p.params, "check_each_transform", False):
                continue

            for data_name in p.data_fields:
                data[data_name] = p.filter(data[data_name], rows, cols)
        return data

    def _to_dict(self) -> typing.Dict[str, typing.Any]:
        dictionary = super(Compose, self)._to_dict()
        bbox_processor = self.processors.get("bboxes")
        keypoints_processor = self.processors.get("keypoints")
        dictionary.update(
            {
                "bbox_params": bbox_processor.params._to_dict() if bbox_processor else None,  # skipcq: PYL-W0212
                "keypoint_params": keypoints_processor.params._to_dict()  # skipcq: PYL-W0212
                if keypoints_processor
                else None,
                "additional_targets": self.additional_targets,
                "is_check_shapes": self.is_check_shapes,
            }
        )
        return dictionary

    def get_dict_with_id(self) -> typing.Dict[str, typing.Any]:
        dictionary = super().get_dict_with_id()
        bbox_processor = self.processors.get("bboxes")
        keypoints_processor = self.processors.get("keypoints")
        dictionary.update(
            {
                "bbox_params": bbox_processor.params._to_dict() if bbox_processor else None,  # skipcq: PYL-W0212
                "keypoint_params": keypoints_processor.params._to_dict()  # skipcq: PYL-W0212
                if keypoints_processor
                else None,
                "additional_targets": self.additional_targets,
                "params": None,
                "is_check_shapes": self.is_check_shapes,
            }
        )
        return dictionary

    def _check_args(self, **kwargs) -> None:
        checked_single = ["image", "mask"]
        checked_multi = ["masks"]
        check_bbox_param = ["bboxes"]
        # ["bboxes", "keypoints"] could be almost any type, no need to check them
        shapes = []
        for data_name, data in kwargs.items():
            internal_data_name = self.additional_targets.get(data_name, data_name)
            if internal_data_name in checked_single:
                if not isinstance(data, np.ndarray):
                    raise TypeError("{} must be numpy array type".format(data_name))
                shapes.append(data.shape[:2])
            if internal_data_name in checked_multi:
                if data is not None and len(data):
                    if not isinstance(data[0], np.ndarray):
                        raise TypeError("{} must be list of numpy arrays".format(data_name))
                    shapes.append(data[0].shape[:2])
            if internal_data_name in check_bbox_param and self.processors.get("bboxes") is None:
                raise ValueError("bbox_params must be specified for bbox transformations")

        if self.is_check_shapes and shapes and shapes.count(shapes[0]) != len(shapes):
            raise ValueError(
                "Height and Width of image, mask or masks should be equal. You can disable shapes check "
                "by setting a parameter is_check_shapes=False of Compose class (do it only if you are sure "
                "about your data consistency)."
            )

    @staticmethod
    def _make_targets_contiguous(data: typing.Dict[str, typing.Any]) -> typing.Dict[str, typing.Any]:
        result = {}
        for key, value in data.items():
            if isinstance(value, np.ndarray):
                value = np.ascontiguousarray(value)
            result[key] = value
        return result


class OneOf(BaseCompose):
    """Select one of transforms to apply. Selected transform will be called with `force_apply=True`.
    Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.

    Args:
        transforms (list): list of transformations to compose.
        p (float): probability of applying selected transform. Default: 0.5.
    """

    def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
        super(OneOf, self).__init__(transforms, p)
        transforms_ps = [t.p for t in self.transforms]
        s = sum(transforms_ps)
        self.transforms_ps = [t / s for t in transforms_ps]

    def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
        if self.replay_mode:
            for t in self.transforms:
                data = t(**data)
            return data

        if self.transforms_ps and (force_apply or random.random() < self.p):
            idx: int = random_utils.choice(len(self.transforms), p=self.transforms_ps)
            t = self.transforms[idx]
            data = t(force_apply=True, **data)
        return data


class SomeOf(BaseCompose):
    """Select N transforms to apply. Selected transforms will be called with `force_apply=True`.
    Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.

    Args:
        transforms (list): list of transformations to compose.
        n (int): number of transforms to apply.
        replace (bool): Whether the sampled transforms are with or without replacement. Default: True.
        p (float): probability of applying selected transform. Default: 1.
    """

    def __init__(self, transforms: TransformsSeqType, n: int, replace: bool = True, p: float = 1):
        super(SomeOf, self).__init__(transforms, p)
        self.n = n
        self.replace = replace
        transforms_ps = [t.p for t in self.transforms]
        s = sum(transforms_ps)
        self.transforms_ps = [t / s for t in transforms_ps]

    def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
        if self.replay_mode:
            for t in self.transforms:
                data = t(**data)
            return data

        if self.transforms_ps and (force_apply or random.random() < self.p):
            idx = random_utils.choice(len(self.transforms), size=self.n, replace=self.replace, p=self.transforms_ps)
            for i in idx:  # type: ignore
                t = self.transforms[i]
                data = t(force_apply=True, **data)
        return data

    def _to_dict(self) -> typing.Dict[str, typing.Any]:
        dictionary = super(SomeOf, self)._to_dict()
        dictionary.update({"n": self.n, "replace": self.replace})
        return dictionary


class OneOrOther(BaseCompose):
    """Select one or another transform to apply. Selected transform will be called with `force_apply=True`."""

    def __init__(
        self,
        first: typing.Optional[TransformType] = None,
        second: typing.Optional[TransformType] = None,
        transforms: typing.Optional[TransformsSeqType] = None,
        p: float = 0.5,
    ):
        if transforms is None:
            if first is None or second is None:
                raise ValueError("You must set both first and second or set transforms argument.")
            transforms = [first, second]
        super(OneOrOther, self).__init__(transforms, p)
        if len(self.transforms) != 2:
            warnings.warn("Length of transforms is not equal to 2.")

    def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
        if self.replay_mode:
            for t in self.transforms:
                data = t(**data)
            return data

        if random.random() < self.p:
            return self.transforms[0](force_apply=True, **data)

        return self.transforms[-1](force_apply=True, **data)


class PerChannel(BaseCompose):
    """Apply transformations per-channel

    Args:
        transforms (list): list of transformations to compose.
        channels (sequence): channels to apply the transform to. Pass None to apply to all.
                         Default: None (apply to all)
        p (float): probability of applying the transform. Default: 0.5.
    """

    def __init__(
        self, transforms: TransformsSeqType, channels: typing.Optional[typing.Sequence[int]] = None, p: float = 0.5
    ):
        super(PerChannel, self).__init__(transforms, p)
        self.channels = channels

    def __call__(self, *args, force_apply: bool = False, **data) -> typing.Dict[str, typing.Any]:
        if force_apply or random.random() < self.p:
            image = data["image"]

            # Expand mono images to have a single channel
            if len(image.shape) == 2:
                image = np.expand_dims(image, -1)

            if self.channels is None:
                self.channels = range(image.shape[2])

            for c in self.channels:
                for t in self.transforms:
                    image[:, :, c] = t(image=image[:, :, c])["image"]

            data["image"] = image

        return data


class ReplayCompose(Compose):
    def __init__(
        self,
        transforms: TransformsSeqType,
        bbox_params: typing.Optional[typing.Union[dict, "BboxParams"]] = None,
        keypoint_params: typing.Optional[typing.Union[dict, "KeypointParams"]] = None,
        additional_targets: typing.Optional[typing.Dict[str, str]] = None,
        p: float = 1.0,
        is_check_shapes: bool = True,
        save_key: str = "replay",
    ):
        super(ReplayCompose, self).__init__(
            transforms, bbox_params, keypoint_params, additional_targets, p, is_check_shapes
        )
        self.set_deterministic(True, save_key=save_key)
        self.save_key = save_key

    def __call__(self, *args, force_apply: bool = False, **kwargs) -> typing.Dict[str, typing.Any]:
        kwargs[self.save_key] = defaultdict(dict)
        result = super(ReplayCompose, self).__call__(force_apply=force_apply, **kwargs)
        serialized = self.get_dict_with_id()
        self.fill_with_params(serialized, result[self.save_key])
        self.fill_applied(serialized)
        result[self.save_key] = serialized
        return result

    @staticmethod
    def replay(saved_augmentations: typing.Dict[str, typing.Any], **kwargs) -> typing.Dict[str, typing.Any]:
        augs = ReplayCompose._restore_for_replay(saved_augmentations)
        return augs(force_apply=True, **kwargs)

    @staticmethod
    def _restore_for_replay(
        transform_dict: typing.Dict[str, typing.Any], lambda_transforms: typing.Optional[dict] = None
    ) -> TransformType:
        """
        Args:
            lambda_transforms (dict): A dictionary that contains lambda transforms, that
            is instances of the Lambda class.
                This dictionary is required when you are restoring a pipeline that contains lambda transforms. Keys
                in that dictionary should be named same as `name` arguments in respective lambda transforms from
                a serialized pipeline.
        """
        applied = transform_dict["applied"]
        params = transform_dict["params"]
        lmbd = instantiate_nonserializable(transform_dict, lambda_transforms)
        if lmbd:
            transform = lmbd
        else:
            name = transform_dict["__class_fullname__"]
            args = {k: v for k, v in transform_dict.items() if k not in ["__class_fullname__", "applied", "params"]}
            cls = SERIALIZABLE_REGISTRY[name]
            if "transforms" in args:
                args["transforms"] = [
                    ReplayCompose._restore_for_replay(t, lambda_transforms=lambda_transforms)
                    for t in args["transforms"]
                ]
            transform = cls(**args)

        transform = typing.cast(BasicTransform, transform)
        if isinstance(transform, BasicTransform):
            transform.params = params
        transform.replay_mode = True
        transform.applied_in_replay = applied
        return transform

    def fill_with_params(self, serialized: dict, all_params: dict) -> None:
        params = all_params.get(serialized.get("id"))
        serialized["params"] = params
        del serialized["id"]
        for transform in serialized.get("transforms", []):
            self.fill_with_params(transform, all_params)

    def fill_applied(self, serialized: typing.Dict[str, typing.Any]) -> bool:
        if "transforms" in serialized:
            applied = [self.fill_applied(t) for t in serialized["transforms"]]
            serialized["applied"] = any(applied)
        else:
            serialized["applied"] = serialized.get("params") is not None
        return serialized["applied"]

    def _to_dict(self) -> typing.Dict[str, typing.Any]:
        dictionary = super(ReplayCompose, self)._to_dict()
        dictionary.update({"save_key": self.save_key})
        return dictionary


class Sequential(BaseCompose):
    """Sequentially applies all transforms to targets.

    Note:
        This transform is not intended to be a replacement for `Compose`. Instead, it should be used inside `Compose`
        the same way `OneOf` or `OneOrOther` are used. For instance, you can combine `OneOf` with `Sequential` to
        create an augmentation pipeline that contains multiple sequences of augmentations and applies one randomly
        chose sequence to input data (see the `Example` section for an example definition of such pipeline).

    Example:
        >>> import custom_albumentations as albumentations as A
        >>> transform = A.Compose([
        >>>    A.OneOf([
        >>>        A.Sequential([
        >>>            A.HorizontalFlip(p=0.5),
        >>>            A.ShiftScaleRotate(p=0.5),
        >>>        ]),
        >>>        A.Sequential([
        >>>            A.VerticalFlip(p=0.5),
        >>>            A.RandomBrightnessContrast(p=0.5),
        >>>        ]),
        >>>    ], p=1)
        >>> ])
    """

    def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
        super().__init__(transforms, p)

    def __call__(self, *args, **data) -> typing.Dict[str, typing.Any]:
        for t in self.transforms:
            data = t(**data)
        return data