File size: 1,080 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from __future__ import division

import numpy as np
import torch
import torchvision.transforms.functional as F


def img_to_tensor(im, normalize=None):
    tensor = torch.from_numpy(np.moveaxis(im / (255.0 if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32))
    if normalize is not None:
        return F.normalize(tensor, **normalize)
    return tensor


def mask_to_tensor(mask, num_classes, sigmoid):
    if num_classes > 1:
        if not sigmoid:
            # softmax
            long_mask = np.zeros((mask.shape[:2]), dtype=np.int64)
            if len(mask.shape) == 3:
                for c in range(mask.shape[2]):
                    long_mask[mask[..., c] > 0] = c
            else:
                long_mask[mask > 127] = 1
                long_mask[mask == 0] = 0
            mask = long_mask
        else:
            mask = np.moveaxis(mask / (255.0 if mask.dtype == np.uint8 else 1), -1, 0).astype(np.float32)
    else:
        mask = np.expand_dims(mask / (255.0 if mask.dtype == np.uint8 else 1), 0).astype(np.float32)
    return torch.from_numpy(mask)