File size: 4,219 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import absolute_import

import warnings

import numpy as np
import torch
from torchvision.transforms import functional as F

from ..core.transforms_interface import BasicTransform

__all__ = ["ToTensorV2"]


def img_to_tensor(im, normalize=None):
    tensor = torch.from_numpy(np.moveaxis(im / (255.0 if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32))
    if normalize is not None:
        return F.normalize(tensor, **normalize)
    return tensor


def mask_to_tensor(mask, num_classes, sigmoid):
    if num_classes > 1:
        if not sigmoid:
            # softmax
            long_mask = np.zeros((mask.shape[:2]), dtype=np.int64)
            if len(mask.shape) == 3:
                for c in range(mask.shape[2]):
                    long_mask[mask[..., c] > 0] = c
            else:
                long_mask[mask > 127] = 1
                long_mask[mask == 0] = 0
            mask = long_mask
        else:
            mask = np.moveaxis(mask / (255.0 if mask.dtype == np.uint8 else 1), -1, 0).astype(np.float32)
    else:
        mask = np.expand_dims(mask / (255.0 if mask.dtype == np.uint8 else 1), 0).astype(np.float32)
    return torch.from_numpy(mask)


class ToTensor(BasicTransform):
    """Convert image and mask to `torch.Tensor` and divide by 255 if image or mask are `uint8` type.
    This transform is now removed from custom_albumentations. If you need it downgrade the library to version 0.5.2.

    Args:
        num_classes (int): only for segmentation
        sigmoid (bool, optional): only for segmentation, transform mask to LongTensor or not.
        normalize (dict, optional): dict with keys [mean, std] to pass it into torchvision.normalize

    """

    def __init__(self, num_classes=1, sigmoid=True, normalize=None):
        raise RuntimeError(
            "`ToTensor` is obsolete and it was removed from custom_albumentations. Please use `ToTensorV2` instead - "
            "https://albumentations.ai/docs/api_reference/pytorch/transforms/"
            "#albumentations.pytorch.transforms.ToTensorV2. "
            "\n\nIf you need `ToTensor` downgrade Albumentations to version 0.5.2."
        )


class ToTensorV2(BasicTransform):
    """Convert image and mask to `torch.Tensor`. The numpy `HWC` image is converted to pytorch `CHW` tensor.
    If the image is in `HW` format (grayscale image), it will be converted to pytorch `HW` tensor.
    This is a simplified and improved version of the old `ToTensor`
    transform (`ToTensor` was deprecated, and now it is not present in Albumentations. You should use `ToTensorV2`
    instead).

    Args:
        transpose_mask (bool): If True and an input mask has three dimensions, this transform will transpose dimensions
            so the shape `[height, width, num_channels]` becomes `[num_channels, height, width]`. The latter format is a
            standard format for PyTorch Tensors. Default: False.
        always_apply (bool): Indicates whether this transformation should be always applied. Default: True.
        p (float): Probability of applying the transform. Default: 1.0.
    """

    def __init__(self, transpose_mask=False, always_apply=True, p=1.0):
        super(ToTensorV2, self).__init__(always_apply=always_apply, p=p)
        self.transpose_mask = transpose_mask

    @property
    def targets(self):
        return {"image": self.apply, "mask": self.apply_to_mask, "masks": self.apply_to_masks}

    def apply(self, img, **params):  # skipcq: PYL-W0613
        if len(img.shape) not in [2, 3]:
            raise ValueError("Albumentations only supports images in HW or HWC format")

        if len(img.shape) == 2:
            img = np.expand_dims(img, 2)

        return torch.from_numpy(img.transpose(2, 0, 1))

    def apply_to_mask(self, mask, **params):  # skipcq: PYL-W0613
        if self.transpose_mask and mask.ndim == 3:
            mask = mask.transpose(2, 0, 1)
        return torch.from_numpy(mask)

    def apply_to_masks(self, masks, **params):
        return [self.apply_to_mask(mask, **params) for mask in masks]

    def get_transform_init_args_names(self):
        return ("transpose_mask",)

    def get_params_dependent_on_targets(self, params):
        return {}