Spaces:
Configuration error
Configuration error
File size: 2,604 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from .network import UNet
from .util import seg2img
import torch
import os
import cv2
from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download, BDS_MODEL_NAME
from huggingface_hub import hf_hub_download
from PIL import Image
from einops import rearrange
from .anime_segmentation import AnimeSegmentation
import numpy as np
class AnimeFaceSegmentor:
def __init__(self, model, seg_model):
self.model = model
self.seg_model = seg_model
self.device = "cpu"
@classmethod
def from_pretrained(cls, pretrained_model_or_path=BDS_MODEL_NAME, filename="UNet.pth", seg_filename="isnetis.ckpt"):
model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder="Annotators")
seg_model_path = custom_hf_download("skytnt/anime-seg", seg_filename)
model = UNet()
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
seg_model = AnimeSegmentation(seg_model_path)
seg_model.net.eval()
return cls(model, seg_model)
def to(self, device):
self.model.to(device)
self.seg_model.net.to(device)
self.device = device
return self
def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", remove_background=True, **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
with torch.no_grad():
if remove_background:
print(input_image.shape)
mask, input_image = self.seg_model(input_image, 0) #Don't resize image as it is resized
image_feed = torch.from_numpy(input_image).float().to(self.device)
image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
image_feed = image_feed / 255
seg = self.model(image_feed).squeeze(dim=0)
result = seg2img(seg.cpu().detach().numpy())
detected_map = HWC3(result)
detected_map = remove_pad(detected_map)
if remove_background:
mask = remove_pad(mask)
H, W, C = detected_map.shape
tmp = np.zeros([H, W, C + 1])
tmp[:,:,:C] = detected_map
tmp[:,:,3:] = mask
detected_map = tmp
if output_type == "pil":
detected_map = Image.fromarray(detected_map[..., :3])
return detected_map
|