Spaces:
Configuration error
Configuration error
File size: 13,460 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
"""
import cv2
import math
import json
from PIL import Image
import os.path as op
import numpy as np
import code
from custom_mesh_graphormer.utils.tsv_file import TSVFile, CompositeTSVFile
from custom_mesh_graphormer.utils.tsv_file_ops import load_linelist_file, load_from_yaml_file, find_file_path_in_yaml
from custom_mesh_graphormer.utils.image_ops import img_from_base64, crop, flip_img, flip_pose, flip_kp, transform, rot_aa
import torch
import torchvision.transforms as transforms
class MeshTSVDataset(object):
def __init__(self, img_file, label_file=None, hw_file=None,
linelist_file=None, is_train=True, cv2_output=False, scale_factor=1):
self.img_file = img_file
self.label_file = label_file
self.hw_file = hw_file
self.linelist_file = linelist_file
self.img_tsv = self.get_tsv_file(img_file)
self.label_tsv = None if label_file is None else self.get_tsv_file(label_file)
self.hw_tsv = None if hw_file is None else self.get_tsv_file(hw_file)
if self.is_composite:
assert op.isfile(self.linelist_file)
self.line_list = [i for i in range(self.hw_tsv.num_rows())]
else:
self.line_list = load_linelist_file(linelist_file)
self.cv2_output = cv2_output
self.normalize_img = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
self.is_train = is_train
self.scale_factor = 0.25 # rescale bounding boxes by a factor of [1-options.scale_factor,1+options.scale_factor]
self.noise_factor = 0.4
self.rot_factor = 30 # Random rotation in the range [-rot_factor, rot_factor]
self.img_res = 224
self.image_keys = self.prepare_image_keys()
self.joints_definition = ('R_Ankle', 'R_Knee', 'R_Hip', 'L_Hip', 'L_Knee', 'L_Ankle', 'R_Wrist', 'R_Elbow', 'R_Shoulder', 'L_Shoulder',
'L_Elbow','L_Wrist','Neck','Top_of_Head','Pelvis','Thorax','Spine','Jaw','Head','Nose','L_Eye','R_Eye','L_Ear','R_Ear')
self.pelvis_index = self.joints_definition.index('Pelvis')
def get_tsv_file(self, tsv_file):
if tsv_file:
if self.is_composite:
return CompositeTSVFile(tsv_file, self.linelist_file,
root=self.root)
tsv_path = find_file_path_in_yaml(tsv_file, self.root)
return TSVFile(tsv_path)
def get_valid_tsv(self):
# sorted by file size
if self.hw_tsv:
return self.hw_tsv
if self.label_tsv:
return self.label_tsv
def prepare_image_keys(self):
tsv = self.get_valid_tsv()
return [tsv.get_key(i) for i in range(tsv.num_rows())]
def prepare_image_key_to_index(self):
tsv = self.get_valid_tsv()
return {tsv.get_key(i) : i for i in range(tsv.num_rows())}
def augm_params(self):
"""Get augmentation parameters."""
flip = 0 # flipping
pn = np.ones(3) # per channel pixel-noise
rot = 0 # rotation
sc = 1 # scaling
if self.is_train:
# We flip with probability 1/2
if np.random.uniform() <= 0.5:
flip = 1
# Each channel is multiplied with a number
# in the area [1-opt.noiseFactor,1+opt.noiseFactor]
pn = np.random.uniform(1-self.noise_factor, 1+self.noise_factor, 3)
# The rotation is a number in the area [-2*rotFactor, 2*rotFactor]
rot = min(2*self.rot_factor,
max(-2*self.rot_factor, np.random.randn()*self.rot_factor))
# The scale is multiplied with a number
# in the area [1-scaleFactor,1+scaleFactor]
sc = min(1+self.scale_factor,
max(1-self.scale_factor, np.random.randn()*self.scale_factor+1))
# but it is zero with probability 3/5
if np.random.uniform() <= 0.6:
rot = 0
return flip, pn, rot, sc
def rgb_processing(self, rgb_img, center, scale, rot, flip, pn):
"""Process rgb image and do augmentation."""
rgb_img = crop(rgb_img, center, scale,
[self.img_res, self.img_res], rot=rot)
# flip the image
if flip:
rgb_img = flip_img(rgb_img)
# in the rgb image we add pixel noise in a channel-wise manner
rgb_img[:,:,0] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,0]*pn[0]))
rgb_img[:,:,1] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,1]*pn[1]))
rgb_img[:,:,2] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,2]*pn[2]))
# (3,224,224),float,[0,1]
rgb_img = np.transpose(rgb_img.astype('float32'),(2,0,1))/255.0
return rgb_img
def j2d_processing(self, kp, center, scale, r, f):
"""Process gt 2D keypoints and apply all augmentation transforms."""
nparts = kp.shape[0]
for i in range(nparts):
kp[i,0:2] = transform(kp[i,0:2]+1, center, scale,
[self.img_res, self.img_res], rot=r)
# convert to normalized coordinates
kp[:,:-1] = 2.*kp[:,:-1]/self.img_res - 1.
# flip the x coordinates
if f:
kp = flip_kp(kp)
kp = kp.astype('float32')
return kp
def j3d_processing(self, S, r, f):
"""Process gt 3D keypoints and apply all augmentation transforms."""
# in-plane rotation
rot_mat = np.eye(3)
if not r == 0:
rot_rad = -r * np.pi / 180
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0,:2] = [cs, -sn]
rot_mat[1,:2] = [sn, cs]
S[:, :-1] = np.einsum('ij,kj->ki', rot_mat, S[:, :-1])
# flip the x coordinates
if f:
S = flip_kp(S)
S = S.astype('float32')
return S
def pose_processing(self, pose, r, f):
"""Process SMPL theta parameters and apply all augmentation transforms."""
# rotation or the pose parameters
pose = pose.astype('float32')
pose[:3] = rot_aa(pose[:3], r)
# flip the pose parameters
if f:
pose = flip_pose(pose)
# (72),float
pose = pose.astype('float32')
return pose
def get_line_no(self, idx):
return idx if self.line_list is None else self.line_list[idx]
def get_image(self, idx):
line_no = self.get_line_no(idx)
row = self.img_tsv[line_no]
# use -1 to support old format with multiple columns.
cv2_im = img_from_base64(row[-1])
if self.cv2_output:
return cv2_im.astype(np.float32, copy=True)
cv2_im = cv2.cvtColor(cv2_im, cv2.COLOR_BGR2RGB)
return cv2_im
def get_annotations(self, idx):
line_no = self.get_line_no(idx)
if self.label_tsv is not None:
row = self.label_tsv[line_no]
annotations = json.loads(row[1])
return annotations
else:
return []
def get_target_from_annotations(self, annotations, img_size, idx):
# This function will be overwritten by each dataset to
# decode the labels to specific formats for each task.
return annotations
def get_img_info(self, idx):
if self.hw_tsv is not None:
line_no = self.get_line_no(idx)
row = self.hw_tsv[line_no]
try:
# json string format with "height" and "width" being the keys
return json.loads(row[1])[0]
except ValueError:
# list of strings representing height and width in order
hw_str = row[1].split(' ')
hw_dict = {"height": int(hw_str[0]), "width": int(hw_str[1])}
return hw_dict
def get_img_key(self, idx):
line_no = self.get_line_no(idx)
# based on the overhead of reading each row.
if self.hw_tsv:
return self.hw_tsv[line_no][0]
elif self.label_tsv:
return self.label_tsv[line_no][0]
else:
return self.img_tsv[line_no][0]
def __len__(self):
if self.line_list is None:
return self.img_tsv.num_rows()
else:
return len(self.line_list)
def __getitem__(self, idx):
img = self.get_image(idx)
img_key = self.get_img_key(idx)
annotations = self.get_annotations(idx)
annotations = annotations[0]
center = annotations['center']
scale = annotations['scale']
has_2d_joints = annotations['has_2d_joints']
has_3d_joints = annotations['has_3d_joints']
joints_2d = np.asarray(annotations['2d_joints'])
joints_3d = np.asarray(annotations['3d_joints'])
if joints_2d.ndim==3:
joints_2d = joints_2d[0]
if joints_3d.ndim==3:
joints_3d = joints_3d[0]
# Get SMPL parameters, if available
has_smpl = np.asarray(annotations['has_smpl'])
pose = np.asarray(annotations['pose'])
betas = np.asarray(annotations['betas'])
try:
gender = annotations['gender']
except KeyError:
gender = 'none'
# Get augmentation parameters
flip,pn,rot,sc = self.augm_params()
# Process image
img = self.rgb_processing(img, center, sc*scale, rot, flip, pn)
img = torch.from_numpy(img).float()
# Store image before normalization to use it in visualization
transfromed_img = self.normalize_img(img)
# normalize 3d pose by aligning the pelvis as the root (at origin)
root_pelvis = joints_3d[self.pelvis_index,:-1]
joints_3d[:,:-1] = joints_3d[:,:-1] - root_pelvis[None,:]
# 3d pose augmentation (random flip + rotation, consistent to image and SMPL)
joints_3d_transformed = self.j3d_processing(joints_3d.copy(), rot, flip)
# 2d pose augmentation
joints_2d_transformed = self.j2d_processing(joints_2d.copy(), center, sc*scale, rot, flip)
###################################
# Masking percantage
# We observe that 30% works better for human body mesh. Further details are reported in the paper.
mvm_percent = 0.3
###################################
mjm_mask = np.ones((14,1))
if self.is_train:
num_joints = 14
pb = np.random.random_sample()
masked_num = int(pb * mvm_percent * num_joints) # at most x% of the joints could be masked
indices = np.random.choice(np.arange(num_joints),replace=False,size=masked_num)
mjm_mask[indices,:] = 0.0
mjm_mask = torch.from_numpy(mjm_mask).float()
mvm_mask = np.ones((431,1))
if self.is_train:
num_vertices = 431
pb = np.random.random_sample()
masked_num = int(pb * mvm_percent * num_vertices) # at most x% of the vertices could be masked
indices = np.random.choice(np.arange(num_vertices),replace=False,size=masked_num)
mvm_mask[indices,:] = 0.0
mvm_mask = torch.from_numpy(mvm_mask).float()
meta_data = {}
meta_data['ori_img'] = img
meta_data['pose'] = torch.from_numpy(self.pose_processing(pose, rot, flip)).float()
meta_data['betas'] = torch.from_numpy(betas).float()
meta_data['joints_3d'] = torch.from_numpy(joints_3d_transformed).float()
meta_data['has_3d_joints'] = has_3d_joints
meta_data['has_smpl'] = has_smpl
meta_data['mjm_mask'] = mjm_mask
meta_data['mvm_mask'] = mvm_mask
# Get 2D keypoints and apply augmentation transforms
meta_data['has_2d_joints'] = has_2d_joints
meta_data['joints_2d'] = torch.from_numpy(joints_2d_transformed).float()
meta_data['scale'] = float(sc * scale)
meta_data['center'] = np.asarray(center).astype(np.float32)
meta_data['gender'] = gender
return img_key, transfromed_img, meta_data
class MeshTSVYamlDataset(MeshTSVDataset):
""" TSVDataset taking a Yaml file for easy function call
"""
def __init__(self, yaml_file, is_train=True, cv2_output=False, scale_factor=1):
self.cfg = load_from_yaml_file(yaml_file)
self.is_composite = self.cfg.get('composite', False)
self.root = op.dirname(yaml_file)
if self.is_composite==False:
img_file = find_file_path_in_yaml(self.cfg['img'], self.root)
label_file = find_file_path_in_yaml(self.cfg.get('label', None),
self.root)
hw_file = find_file_path_in_yaml(self.cfg.get('hw', None), self.root)
linelist_file = find_file_path_in_yaml(self.cfg.get('linelist', None),
self.root)
else:
img_file = self.cfg['img']
hw_file = self.cfg['hw']
label_file = self.cfg.get('label', None)
linelist_file = find_file_path_in_yaml(self.cfg.get('linelist', None),
self.root)
super(MeshTSVYamlDataset, self).__init__(
img_file, label_file, hw_file, linelist_file, is_train, cv2_output=cv2_output, scale_factor=scale_factor)
|