File size: 7,400 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
This file contains the MANO defination and mesh sampling operations for MANO mesh

Adapted from opensource projects 
MANOPTH (https://github.com/hassony2/manopth) 
Pose2Mesh (https://github.com/hongsukchoi/Pose2Mesh_RELEASE)
GraphCMR (https://github.com/nkolot/GraphCMR/) 
"""

from __future__ import division
import numpy as np
import torch
import torch.nn as nn
import os.path as osp
import json
import code
from custom_manopth.manolayer import ManoLayer
import scipy.sparse
import custom_mesh_graphormer.modeling.data.config as cfg
from pathlib import Path

from comfy.model_management import get_torch_device
from wrapper_for_mps import sparse_to_dense
device = get_torch_device()

class MANO(nn.Module):
    def __init__(self):
        super(MANO, self).__init__()

        self.mano_dir = str(Path(__file__).parent / "data")
        self.layer = self.get_layer()
        self.vertex_num = 778
        self.face = self.layer.th_faces.numpy()
        self.joint_regressor = self.layer.th_J_regressor.numpy()
        
        self.joint_num = 21
        self.joints_name = ('Wrist', 'Thumb_1', 'Thumb_2', 'Thumb_3', 'Thumb_4', 'Index_1', 'Index_2', 'Index_3', 'Index_4', 'Middle_1', 'Middle_2', 'Middle_3', 'Middle_4', 'Ring_1', 'Ring_2', 'Ring_3', 'Ring_4', 'Pinky_1', 'Pinky_2', 'Pinky_3', 'Pinky_4')
        self.skeleton = ( (0,1), (0,5), (0,9), (0,13), (0,17), (1,2), (2,3), (3,4), (5,6), (6,7), (7,8), (9,10), (10,11), (11,12), (13,14), (14,15), (15,16), (17,18), (18,19), (19,20) )
        self.root_joint_idx = self.joints_name.index('Wrist')

        # add fingertips to joint_regressor
        self.fingertip_vertex_idx = [745, 317, 444, 556, 673] # mesh vertex idx (right hand)
        thumbtip_onehot = np.array([1 if i == 745 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
        indextip_onehot = np.array([1 if i == 317 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
        middletip_onehot = np.array([1 if i == 445 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
        ringtip_onehot = np.array([1 if i == 556 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
        pinkytip_onehot = np.array([1 if i == 673 else 0 for i in range(self.joint_regressor.shape[1])], dtype=np.float32).reshape(1,-1)
        self.joint_regressor = np.concatenate((self.joint_regressor, thumbtip_onehot, indextip_onehot, middletip_onehot, ringtip_onehot, pinkytip_onehot))
        self.joint_regressor = self.joint_regressor[[0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20],:]
        joint_regressor_torch = torch.from_numpy(self.joint_regressor).float()
        self.register_buffer('joint_regressor_torch', joint_regressor_torch)

    def get_layer(self):
        return ManoLayer(mano_root=osp.join(self.mano_dir), flat_hand_mean=False, use_pca=False) # load right hand MANO model

    def get_3d_joints(self, vertices):
        """
        This method is used to get the joint locations from the SMPL mesh
        Input:
            vertices: size = (B, 778, 3)
        Output:
            3D joints: size = (B, 21, 3)
        """
        joints = torch.einsum('bik,ji->bjk', [vertices, self.joint_regressor_torch])
        return joints


class SparseMM(torch.autograd.Function):
    """Redefine sparse @ dense matrix multiplication to enable backpropagation.
    The builtin matrix multiplication operation does not support backpropagation in some cases.
    """
    @staticmethod
    def forward(ctx, sparse, dense):
        ctx.req_grad = dense.requires_grad
        ctx.save_for_backward(sparse)
        return torch.matmul(sparse, dense)

    @staticmethod
    def backward(ctx, grad_output):
        grad_input = None
        sparse, = ctx.saved_tensors
        if ctx.req_grad:
            grad_input = torch.matmul(sparse.t(), grad_output)
        return None, grad_input

def spmm(sparse, dense):
    sparse = sparse.to(device)
    dense = dense.to(device)
    return SparseMM.apply(sparse, dense)


def scipy_to_pytorch(A, U, D):
    """Convert scipy sparse matrices to pytorch sparse matrix."""
    ptU = []
    ptD = []
    
    for i in range(len(U)):
        u = scipy.sparse.coo_matrix(U[i])
        i = torch.LongTensor(np.array([u.row, u.col]))
        v = torch.FloatTensor(u.data)
        ptU.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, u.shape)))
    
    for i in range(len(D)):
        d = scipy.sparse.coo_matrix(D[i])
        i = torch.LongTensor(np.array([d.row, d.col]))
        v = torch.FloatTensor(d.data)
        ptD.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, d.shape)))

    return ptU, ptD


def adjmat_sparse(adjmat, nsize=1):
    """Create row-normalized sparse graph adjacency matrix."""
    adjmat = scipy.sparse.csr_matrix(adjmat)
    if nsize > 1:
        orig_adjmat = adjmat.copy()
        for _ in range(1, nsize):
            adjmat = adjmat * orig_adjmat
    adjmat.data = np.ones_like(adjmat.data)
    for i in range(adjmat.shape[0]):
        adjmat[i,i] = 1
    num_neighbors = np.array(1 / adjmat.sum(axis=-1))
    adjmat = adjmat.multiply(num_neighbors)
    adjmat = scipy.sparse.coo_matrix(adjmat)
    row = adjmat.row
    col = adjmat.col
    data = adjmat.data
    i = torch.LongTensor(np.array([row, col]))
    v = torch.from_numpy(data).float()
    adjmat = sparse_to_dense(torch.sparse_coo_tensor(i, v, adjmat.shape))
    return adjmat

def get_graph_params(filename, nsize=1):
    """Load and process graph adjacency matrix and upsampling/downsampling matrices."""
    data = np.load(filename, encoding='latin1', allow_pickle=True)
    A = data['A']
    U = data['U']
    D = data['D']
    U, D = scipy_to_pytorch(A, U, D)
    A = [adjmat_sparse(a, nsize=nsize) for a in A]
    return A, U, D


class Mesh(object):
    """Mesh object that is used for handling certain graph operations."""
    def __init__(self, filename=cfg.MANO_sampling_matrix,
                 num_downsampling=1, nsize=1, device=torch.device('cuda')):
        self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
        # self._A = [a.to(device) for a in self._A]
        self._U = [u.to(device) for u in self._U]
        self._D = [d.to(device) for d in self._D]
        self.num_downsampling = num_downsampling

    def downsample(self, x, n1=0, n2=None):
        """Downsample mesh."""
        if n2 is None:
            n2 = self.num_downsampling
        if x.ndimension() < 3:
            for i in range(n1, n2):
                x = spmm(self._D[i], x)
        elif x.ndimension() == 3:
            out = []
            for i in range(x.shape[0]):
                y = x[i]
                for j in range(n1, n2):
                    y = spmm(self._D[j], y)
                out.append(y)
            x = torch.stack(out, dim=0)
        return x

    def upsample(self, x, n1=1, n2=0):
        """Upsample mesh."""
        if x.ndimension() < 3:
            for i in reversed(range(n2, n1)):
                x = spmm(self._U[i], x)
        elif x.ndimension() == 3:
            out = []
            for i in range(x.shape[0]):
                y = x[i]
                for j in reversed(range(n2, n1)):
                    y = spmm(self._U[j], y)
                out.append(y)
            x = torch.stack(out, dim=0)
        return x